Atomic Solitons in Optical Lattices View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2003

AUTHORS

S. Pötting , P. Meystre , E. M. Wright

ABSTRACT

The experimental demonstration of Bose—Einstein condensation in atomic vapors [1–3] has rapidly lead to spectacular new advances in atom optics. In particular, it has enabled its extension from the linear to the nonlinear regime, very much like the laser lead to the development of nonlinear optics in the 1960s. It is now well established that two-body collisions play for matter waves a role analogous to that of a Kerr nonlinear crystal in optics. In particular, it is known that the nonlinear Schrödinger equation which describes the condensate in the Hartree approximation supports soliton solutions. For the case of repulsive interactions normally encountered in BEC experiments, the simplest solutions are dark solitons, that is, ‘dips’ in the density profile of the condensate. These dark solitons have been recently demonstrated in two experiments [4,5] which appear to be in good agreement with the predictions of the Gross—Pitaevskii equation. More... »

PAGES

301-319

Book

TITLE

Nonlinear Photonic Crystals

ISBN

978-3-642-07867-5
978-3-662-05144-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-05144-3_14

DOI

http://dx.doi.org/10.1007/978-3-662-05144-3_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032166332


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "P\u00f6tting", 
        "givenName": "S.", 
        "id": "sg:person.010056367357.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010056367357.06"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Meystre", 
        "givenName": "P.", 
        "id": "sg:person.010042543335.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Wright", 
        "givenName": "E. M.", 
        "id": "sg:person.015530547422.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015530547422.38"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "The experimental demonstration of Bose\u2014Einstein condensation in atomic vapors [1\u20133] has rapidly lead to spectacular new advances in atom optics. In particular, it has enabled its extension from the linear to the nonlinear regime, very much like the laser lead to the development of nonlinear optics in the 1960s. It is now well established that two-body collisions play for matter waves a role analogous to that of a Kerr nonlinear crystal in optics. In particular, it is known that the nonlinear Schr\u00f6dinger equation which describes the condensate in the Hartree approximation supports soliton solutions. For the case of repulsive interactions normally encountered in BEC experiments, the simplest solutions are dark solitons, that is, \u2018dips\u2019 in the density profile of the condensate. These dark solitons have been recently demonstrated in two experiments [4,5] which appear to be in good agreement with the predictions of the Gross\u2014Pitaevskii equation.", 
    "editor": [
      {
        "familyName": "Slusher", 
        "givenName": "Richard E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Eggleton", 
        "givenName": "Benjamin J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-05144-3_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-07867-5", 
        "978-3-662-05144-3"
      ], 
      "name": "Nonlinear Photonic Crystals", 
      "type": "Book"
    }, 
    "keywords": [
      "dark solitons", 
      "Kerr nonlinear crystal", 
      "two-body collisions", 
      "Bose-Einstein condensation", 
      "Gross-Pitaevskii equation", 
      "nonlinear Schr\u00f6dinger equation", 
      "atomic solitons", 
      "atom optics", 
      "matter waves", 
      "optical lattice", 
      "atomic vapor", 
      "nonlinear crystal", 
      "nonlinear optics", 
      "BEC experiments", 
      "laser lead", 
      "experimental demonstration", 
      "soliton solutions", 
      "Hartree approximation", 
      "density profiles", 
      "Schr\u00f6dinger equation", 
      "nonlinear regime", 
      "optics", 
      "solitons", 
      "repulsive interactions", 
      "condensate", 
      "good agreement", 
      "equations", 
      "simple solution", 
      "collisions", 
      "approximation", 
      "solution", 
      "waves", 
      "crystals", 
      "lattice", 
      "linear", 
      "regime", 
      "dip", 
      "experiments", 
      "vapor", 
      "agreement", 
      "extension", 
      "demonstration", 
      "prediction", 
      "interaction", 
      "new advances", 
      "condensation", 
      "profile", 
      "cases", 
      "lead", 
      "advances", 
      "development", 
      "role"
    ], 
    "name": "Atomic Solitons in Optical Lattices", 
    "pagination": "301-319", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032166332"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-05144-3_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-05144-3_14", 
      "https://app.dimensions.ai/details/publication/pub.1032166332"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_35.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-05144-3_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-05144-3_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-05144-3_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-05144-3_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-05144-3_14'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-05144-3_14 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N455545bb107b4b6abdf759b4a9986cd6
4 schema:datePublished 2003
5 schema:datePublishedReg 2003-01-01
6 schema:description The experimental demonstration of Bose—Einstein condensation in atomic vapors [1–3] has rapidly lead to spectacular new advances in atom optics. In particular, it has enabled its extension from the linear to the nonlinear regime, very much like the laser lead to the development of nonlinear optics in the 1960s. It is now well established that two-body collisions play for matter waves a role analogous to that of a Kerr nonlinear crystal in optics. In particular, it is known that the nonlinear Schrödinger equation which describes the condensate in the Hartree approximation supports soliton solutions. For the case of repulsive interactions normally encountered in BEC experiments, the simplest solutions are dark solitons, that is, ‘dips’ in the density profile of the condensate. These dark solitons have been recently demonstrated in two experiments [4,5] which appear to be in good agreement with the predictions of the Gross—Pitaevskii equation.
7 schema:editor N1c32a2a11aad4f5fb761f28a0c1cfa55
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nb8cc3ffb8794457585df955af41fb066
12 schema:keywords BEC experiments
13 Bose-Einstein condensation
14 Gross-Pitaevskii equation
15 Hartree approximation
16 Kerr nonlinear crystal
17 Schrödinger equation
18 advances
19 agreement
20 approximation
21 atom optics
22 atomic solitons
23 atomic vapor
24 cases
25 collisions
26 condensate
27 condensation
28 crystals
29 dark solitons
30 demonstration
31 density profiles
32 development
33 dip
34 equations
35 experimental demonstration
36 experiments
37 extension
38 good agreement
39 interaction
40 laser lead
41 lattice
42 lead
43 linear
44 matter waves
45 new advances
46 nonlinear Schrödinger equation
47 nonlinear crystal
48 nonlinear optics
49 nonlinear regime
50 optical lattice
51 optics
52 prediction
53 profile
54 regime
55 repulsive interactions
56 role
57 simple solution
58 soliton solutions
59 solitons
60 solution
61 two-body collisions
62 vapor
63 waves
64 schema:name Atomic Solitons in Optical Lattices
65 schema:pagination 301-319
66 schema:productId Nb43c7175f1b44d42b2c80304edab738b
67 Ne1346b6ad27541a59b87f3552608849d
68 schema:publisher N512e3e37bcd0466bb0c18e69957ee3b1
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032166332
70 https://doi.org/10.1007/978-3-662-05144-3_14
71 schema:sdDatePublished 2022-05-20T07:46
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Ndf0f70f5ba714932abaeb7eb11d45caa
74 schema:url https://doi.org/10.1007/978-3-662-05144-3_14
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N1c32a2a11aad4f5fb761f28a0c1cfa55 rdf:first N35f8fa13e072496e8427b9ab4fedcf0e
79 rdf:rest N9892d8c83e22485eb432217cc6dd6fc4
80 N35f8fa13e072496e8427b9ab4fedcf0e schema:familyName Slusher
81 schema:givenName Richard E.
82 rdf:type schema:Person
83 N455545bb107b4b6abdf759b4a9986cd6 rdf:first sg:person.010056367357.06
84 rdf:rest N819a2c7c130b40c9ac1577aff47450ec
85 N512e3e37bcd0466bb0c18e69957ee3b1 schema:name Springer Nature
86 rdf:type schema:Organisation
87 N60a21567744d4afe968655e68cd4d5e3 rdf:first sg:person.015530547422.38
88 rdf:rest rdf:nil
89 N819a2c7c130b40c9ac1577aff47450ec rdf:first sg:person.010042543335.11
90 rdf:rest N60a21567744d4afe968655e68cd4d5e3
91 N9892d8c83e22485eb432217cc6dd6fc4 rdf:first Nb7cc725c27ba428b80e745e5b8621ddb
92 rdf:rest rdf:nil
93 Nb43c7175f1b44d42b2c80304edab738b schema:name doi
94 schema:value 10.1007/978-3-662-05144-3_14
95 rdf:type schema:PropertyValue
96 Nb7cc725c27ba428b80e745e5b8621ddb schema:familyName Eggleton
97 schema:givenName Benjamin J.
98 rdf:type schema:Person
99 Nb8cc3ffb8794457585df955af41fb066 schema:isbn 978-3-642-07867-5
100 978-3-662-05144-3
101 schema:name Nonlinear Photonic Crystals
102 rdf:type schema:Book
103 Ndf0f70f5ba714932abaeb7eb11d45caa schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Ne1346b6ad27541a59b87f3552608849d schema:name dimensions_id
106 schema:value pub.1032166332
107 rdf:type schema:PropertyValue
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
112 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
113 rdf:type schema:DefinedTerm
114 sg:person.010042543335.11 schema:familyName Meystre
115 schema:givenName P.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11
117 rdf:type schema:Person
118 sg:person.010056367357.06 schema:familyName Pötting
119 schema:givenName S.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010056367357.06
121 rdf:type schema:Person
122 sg:person.015530547422.38 schema:familyName Wright
123 schema:givenName E. M.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015530547422.38
125 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...