Atomic Solitons in Optical Lattices View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2003

AUTHORS

S. Pötting , P. Meystre , E. M. Wright

ABSTRACT

The experimental demonstration of Bose—Einstein condensation in atomic vapors [1–3] has rapidly lead to spectacular new advances in atom optics. In particular, it has enabled its extension from the linear to the nonlinear regime, very much like the laser lead to the development of nonlinear optics in the 1960s. It is now well established that two-body collisions play for matter waves a role analogous to that of a Kerr nonlinear crystal in optics. In particular, it is known that the nonlinear Schrödinger equation which describes the condensate in the Hartree approximation supports soliton solutions. For the case of repulsive interactions normally encountered in BEC experiments, the simplest solutions are dark solitons, that is, ‘dips’ in the density profile of the condensate. These dark solitons have been recently demonstrated in two experiments [4,5] which appear to be in good agreement with the predictions of the Gross—Pitaevskii equation. More... »

PAGES

301-319

Book

TITLE

Nonlinear Photonic Crystals

ISBN

978-3-642-07867-5
978-3-662-05144-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-05144-3_14

DOI

http://dx.doi.org/10.1007/978-3-662-05144-3_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032166332


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "P\u00f6tting", 
        "givenName": "S.", 
        "id": "sg:person.010056367357.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010056367357.06"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Meystre", 
        "givenName": "P.", 
        "id": "sg:person.010042543335.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Wright", 
        "givenName": "E. M.", 
        "id": "sg:person.015530547422.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015530547422.38"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "The experimental demonstration of Bose\u2014Einstein condensation in atomic vapors [1\u20133] has rapidly lead to spectacular new advances in atom optics. In particular, it has enabled its extension from the linear to the nonlinear regime, very much like the laser lead to the development of nonlinear optics in the 1960s. It is now well established that two-body collisions play for matter waves a role analogous to that of a Kerr nonlinear crystal in optics. In particular, it is known that the nonlinear Schr\u00f6dinger equation which describes the condensate in the Hartree approximation supports soliton solutions. For the case of repulsive interactions normally encountered in BEC experiments, the simplest solutions are dark solitons, that is, \u2018dips\u2019 in the density profile of the condensate. These dark solitons have been recently demonstrated in two experiments [4,5] which appear to be in good agreement with the predictions of the Gross\u2014Pitaevskii equation.", 
    "editor": [
      {
        "familyName": "Slusher", 
        "givenName": "Richard E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Eggleton", 
        "givenName": "Benjamin J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-05144-3_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-07867-5", 
        "978-3-662-05144-3"
      ], 
      "name": "Nonlinear Photonic Crystals", 
      "type": "Book"
    }, 
    "keywords": [
      "dark solitons", 
      "Bose-Einstein condensation", 
      "two-body collisions", 
      "Gross-Pitaevskii equation", 
      "atomic solitons", 
      "atom optics", 
      "matter waves", 
      "atomic vapor", 
      "BEC experiments", 
      "optical lattice", 
      "nonlinear optics", 
      "nonlinear crystal", 
      "laser lead", 
      "experimental demonstration", 
      "Hartree approximation", 
      "nonlinear Schr\u00f6dinger equation", 
      "density profiles", 
      "nonlinear regime", 
      "optics", 
      "Schr\u00f6dinger equation", 
      "solitons", 
      "repulsive interactions", 
      "condensate", 
      "soliton solutions", 
      "good agreement", 
      "collisions", 
      "waves", 
      "crystals", 
      "lattice", 
      "regime", 
      "approximation", 
      "experiments", 
      "dip", 
      "vapor", 
      "agreement", 
      "equations", 
      "demonstration", 
      "simple solution", 
      "new advances", 
      "interaction", 
      "condensation", 
      "linear", 
      "prediction", 
      "lead", 
      "solution", 
      "profile", 
      "advances", 
      "extension", 
      "cases", 
      "development", 
      "role", 
      "spectacular new advances", 
      "Kerr nonlinear crystal"
    ], 
    "name": "Atomic Solitons in Optical Lattices", 
    "pagination": "301-319", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032166332"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-05144-3_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-05144-3_14", 
      "https://app.dimensions.ai/details/publication/pub.1032166332"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_185.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-05144-3_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-05144-3_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-05144-3_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-05144-3_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-05144-3_14'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      79 URIs      72 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-05144-3_14 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N1e18b39c8ad44b71bd55cb8504db189c
4 schema:datePublished 2003
5 schema:datePublishedReg 2003-01-01
6 schema:description The experimental demonstration of Bose—Einstein condensation in atomic vapors [1–3] has rapidly lead to spectacular new advances in atom optics. In particular, it has enabled its extension from the linear to the nonlinear regime, very much like the laser lead to the development of nonlinear optics in the 1960s. It is now well established that two-body collisions play for matter waves a role analogous to that of a Kerr nonlinear crystal in optics. In particular, it is known that the nonlinear Schrödinger equation which describes the condensate in the Hartree approximation supports soliton solutions. For the case of repulsive interactions normally encountered in BEC experiments, the simplest solutions are dark solitons, that is, ‘dips’ in the density profile of the condensate. These dark solitons have been recently demonstrated in two experiments [4,5] which appear to be in good agreement with the predictions of the Gross—Pitaevskii equation.
7 schema:editor N6e7b90a74b21479da150c9de4889ab61
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Na52b4dc36ec5422eb06d5b43def67471
12 schema:keywords BEC experiments
13 Bose-Einstein condensation
14 Gross-Pitaevskii equation
15 Hartree approximation
16 Kerr nonlinear crystal
17 Schrödinger equation
18 advances
19 agreement
20 approximation
21 atom optics
22 atomic solitons
23 atomic vapor
24 cases
25 collisions
26 condensate
27 condensation
28 crystals
29 dark solitons
30 demonstration
31 density profiles
32 development
33 dip
34 equations
35 experimental demonstration
36 experiments
37 extension
38 good agreement
39 interaction
40 laser lead
41 lattice
42 lead
43 linear
44 matter waves
45 new advances
46 nonlinear Schrödinger equation
47 nonlinear crystal
48 nonlinear optics
49 nonlinear regime
50 optical lattice
51 optics
52 prediction
53 profile
54 regime
55 repulsive interactions
56 role
57 simple solution
58 soliton solutions
59 solitons
60 solution
61 spectacular new advances
62 two-body collisions
63 vapor
64 waves
65 schema:name Atomic Solitons in Optical Lattices
66 schema:pagination 301-319
67 schema:productId N63c31c5c7ffa4e37b561f978ac900795
68 N6e7a5d3aad9148188899e66682f22249
69 schema:publisher Nf75e0042e8d04a0c8333fa7387dc0940
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032166332
71 https://doi.org/10.1007/978-3-662-05144-3_14
72 schema:sdDatePublished 2022-01-01T19:11
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nc4477f7bcbb444f383c87cb61faced7e
75 schema:url https://doi.org/10.1007/978-3-662-05144-3_14
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N0dce2d72a978432ba3647eb217316c19 rdf:first sg:person.015530547422.38
80 rdf:rest rdf:nil
81 N1e18b39c8ad44b71bd55cb8504db189c rdf:first sg:person.010056367357.06
82 rdf:rest Na2afb7cd4756455682bc6eda6efda814
83 N304839900b794bfba91c249c73997295 rdf:first Nd0bd0bf2b87b44b1b54f4584f1921460
84 rdf:rest rdf:nil
85 N63c31c5c7ffa4e37b561f978ac900795 schema:name dimensions_id
86 schema:value pub.1032166332
87 rdf:type schema:PropertyValue
88 N6e7a5d3aad9148188899e66682f22249 schema:name doi
89 schema:value 10.1007/978-3-662-05144-3_14
90 rdf:type schema:PropertyValue
91 N6e7b90a74b21479da150c9de4889ab61 rdf:first Nc5d7d31843d848d99b82e01edcf92574
92 rdf:rest N304839900b794bfba91c249c73997295
93 Na2afb7cd4756455682bc6eda6efda814 rdf:first sg:person.010042543335.11
94 rdf:rest N0dce2d72a978432ba3647eb217316c19
95 Na52b4dc36ec5422eb06d5b43def67471 schema:isbn 978-3-642-07867-5
96 978-3-662-05144-3
97 schema:name Nonlinear Photonic Crystals
98 rdf:type schema:Book
99 Nc4477f7bcbb444f383c87cb61faced7e schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nc5d7d31843d848d99b82e01edcf92574 schema:familyName Slusher
102 schema:givenName Richard E.
103 rdf:type schema:Person
104 Nd0bd0bf2b87b44b1b54f4584f1921460 schema:familyName Eggleton
105 schema:givenName Benjamin J.
106 rdf:type schema:Person
107 Nf75e0042e8d04a0c8333fa7387dc0940 schema:name Springer Nature
108 rdf:type schema:Organisation
109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
113 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
114 rdf:type schema:DefinedTerm
115 sg:person.010042543335.11 schema:familyName Meystre
116 schema:givenName P.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11
118 rdf:type schema:Person
119 sg:person.010056367357.06 schema:familyName Pötting
120 schema:givenName S.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010056367357.06
122 rdf:type schema:Person
123 sg:person.015530547422.38 schema:familyName Wright
124 schema:givenName E. M.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015530547422.38
126 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...