Non-commutative Hypercomplex Fourier Transforms of Multidimensional Signals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Thomas Bülow , Michael Felsberg , Gerald Sommer

ABSTRACT

Harmonic transforms, and among those especially the Fourier transform, play an essential role in mathematical analysis, in almost any part of modern physics, as well as in electrical engineering. The analysis of the following four chapters is motivated by the use of the Fourier transform in signal processing. It turns out that some powerful concepts of one-dimensional signal theory can hardly be carried over to the theory of n-dimensional signals by using the complex Fourier transform. We start by introducing and studying the hypercomplex Fourier transforms in the following two chapters. In this chapter representations in non-commutative algebras are investigated, while chapter 9 is concerned with representations in commutative hypercomplex algebras. After these rather theoretical investigations we turn towards practice in chapter 10 where fast algorithms for the transforms are presented and in chapter 11 where local quaternion-valued LSI-filters based on the quaternionic Fourier transform are introduced and applied to image processing tasks. More... »

PAGES

187-207

Book

TITLE

Geometric Computing with Clifford Algebras

ISBN

978-3-642-07442-4
978-3-662-04621-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-04621-0_8

DOI

http://dx.doi.org/10.1007/978-3-662-04621-0_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015423218


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00fclow", 
        "givenName": "Thomas", 
        "id": "sg:person.011477376207.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011477376207.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Felsberg", 
        "givenName": "Michael", 
        "id": "sg:person.01174505720.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174505720.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sommer", 
        "givenName": "Gerald", 
        "id": "sg:person.011402450746.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011402450746.08"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "Harmonic transforms, and among those especially the Fourier transform, play an essential role in mathematical analysis, in almost any part of modern physics, as well as in electrical engineering. The analysis of the following four chapters is motivated by the use of the Fourier transform in signal processing. It turns out that some powerful concepts of one-dimensional signal theory can hardly be carried over to the theory of n-dimensional signals by using the complex Fourier transform. We start by introducing and studying the hypercomplex Fourier transforms in the following two chapters. In this chapter representations in non-commutative algebras are investigated, while chapter 9 is concerned with representations in commutative hypercomplex algebras. After these rather theoretical investigations we turn towards practice in chapter 10 where fast algorithms for the transforms are presented and in chapter 11 where local quaternion-valued LSI-filters based on the quaternionic Fourier transform are introduced and applied to image processing tasks.", 
    "editor": [
      {
        "familyName": "Sommer", 
        "givenName": "Gerald", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-04621-0_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-07442-4", 
        "978-3-662-04621-0"
      ], 
      "name": "Geometric Computing with Clifford Algebras", 
      "type": "Book"
    }, 
    "name": "Non-commutative Hypercomplex Fourier Transforms of Multidimensional Signals", 
    "pagination": "187-207", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-04621-0_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "497c66c3ffb14a54f1fb8061a6d0e88aa8bc02020bc5bbd96d1369b4a7f90897"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015423218"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-04621-0_8", 
      "https://app.dimensions.ai/details/publication/pub.1015423218"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000026.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-04621-0_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04621-0_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04621-0_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04621-0_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04621-0_8'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-04621-0_8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N56a4ec58157e4e709fabe462ea9cde9f
4 schema:datePublished 2001
5 schema:datePublishedReg 2001-01-01
6 schema:description Harmonic transforms, and among those especially the Fourier transform, play an essential role in mathematical analysis, in almost any part of modern physics, as well as in electrical engineering. The analysis of the following four chapters is motivated by the use of the Fourier transform in signal processing. It turns out that some powerful concepts of one-dimensional signal theory can hardly be carried over to the theory of n-dimensional signals by using the complex Fourier transform. We start by introducing and studying the hypercomplex Fourier transforms in the following two chapters. In this chapter representations in non-commutative algebras are investigated, while chapter 9 is concerned with representations in commutative hypercomplex algebras. After these rather theoretical investigations we turn towards practice in chapter 10 where fast algorithms for the transforms are presented and in chapter 11 where local quaternion-valued LSI-filters based on the quaternionic Fourier transform are introduced and applied to image processing tasks.
7 schema:editor N0c9f48bb4a064f67932516dcf7684397
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc16d8f7333924a5e9aa43372103cce80
12 schema:name Non-commutative Hypercomplex Fourier Transforms of Multidimensional Signals
13 schema:pagination 187-207
14 schema:productId N1766d127fe5a437993d508f9d3dd1f67
15 N5d0a4c8739684fcfafc7c4461030a90a
16 N965c0c0bad2a4aae94327f340c4f6748
17 schema:publisher N0356c8f53ac647268ed5bcf09e5b9acf
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015423218
19 https://doi.org/10.1007/978-3-662-04621-0_8
20 schema:sdDatePublished 2019-04-15T11:17
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N4a0c4799fd6c40e39445cdf45f8e26d4
23 schema:url http://link.springer.com/10.1007/978-3-662-04621-0_8
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0356c8f53ac647268ed5bcf09e5b9acf schema:location Berlin, Heidelberg
28 schema:name Springer Berlin Heidelberg
29 rdf:type schema:Organisation
30 N0c9f48bb4a064f67932516dcf7684397 rdf:first Nb3b7c54ba5e5411db3996e0dc8d684ec
31 rdf:rest rdf:nil
32 N1766d127fe5a437993d508f9d3dd1f67 schema:name doi
33 schema:value 10.1007/978-3-662-04621-0_8
34 rdf:type schema:PropertyValue
35 N4a0c4799fd6c40e39445cdf45f8e26d4 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N56a4ec58157e4e709fabe462ea9cde9f rdf:first sg:person.011477376207.49
38 rdf:rest N9a1a13c5ede04a219787b5bcd51d8704
39 N5d0a4c8739684fcfafc7c4461030a90a schema:name readcube_id
40 schema:value 497c66c3ffb14a54f1fb8061a6d0e88aa8bc02020bc5bbd96d1369b4a7f90897
41 rdf:type schema:PropertyValue
42 N5e1bd66206ca4c3c87aa4f2ef4a66b93 rdf:first sg:person.011402450746.08
43 rdf:rest rdf:nil
44 N965c0c0bad2a4aae94327f340c4f6748 schema:name dimensions_id
45 schema:value pub.1015423218
46 rdf:type schema:PropertyValue
47 N9a1a13c5ede04a219787b5bcd51d8704 rdf:first sg:person.01174505720.90
48 rdf:rest N5e1bd66206ca4c3c87aa4f2ef4a66b93
49 Nb3b7c54ba5e5411db3996e0dc8d684ec schema:familyName Sommer
50 schema:givenName Gerald
51 rdf:type schema:Person
52 Nc16d8f7333924a5e9aa43372103cce80 schema:isbn 978-3-642-07442-4
53 978-3-662-04621-0
54 schema:name Geometric Computing with Clifford Algebras
55 rdf:type schema:Book
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:person.011402450746.08 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
63 schema:familyName Sommer
64 schema:givenName Gerald
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011402450746.08
66 rdf:type schema:Person
67 sg:person.011477376207.49 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
68 schema:familyName Bülow
69 schema:givenName Thomas
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011477376207.49
71 rdf:type schema:Person
72 sg:person.01174505720.90 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
73 schema:familyName Felsberg
74 schema:givenName Michael
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174505720.90
76 rdf:type schema:Person
77 https://www.grid.ac/institutes/grid.9764.c schema:alternateName Kiel University
78 schema:name Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel, Germany
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...