Real-Time Solutions of Bang-Bang and Singular Optimal Control Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Christof Büskens , Hans Josef Pesch , Susanne Winderl

ABSTRACT

In many applications of optimal control some or all of the control variables appear linearly in the objective function and the dynamical equations. Therefore, the optimal solutions may exhibit both bang-bang and singular subarcs. Unfortunately, the theory for linear problems of that type is not as well developed as for regular problems, in particular with respect to second order sufficiency conditions. This results in serious problems in developing real-time capable methods to approximate optimal solutions in the presence of data perturbations. In this paper, two discretization methods are presented by which linear optimal control problems can be transcribed into nonlinear programming problems. Based on a stability and sensitivity analysis of the resulting nonlinear programming problems it is possible to compute sensitivity differentials for the discretized problems, by means of which near-optimal solutions can now be computed in real-time for linear problems, too. The performance of one of these methods is demonstrated for the optimal control of a batch reactor. More... »

PAGES

129-142

Book

TITLE

Online Optimization of Large Scale Systems

ISBN

978-3-642-07633-6
978-3-662-04331-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-04331-8_9

DOI

http://dx.doi.org/10.1007/978-3-662-04331-8_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014138682


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00fcskens", 
        "givenName": "Christof", 
        "id": "sg:person.010737342427.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010737342427.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "Hans Josef", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7384.8", 
          "name": [
            "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winderl", 
        "givenName": "Susanne", 
        "id": "sg:person.011076136407.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011076136407.95"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "In many applications of optimal control some or all of the control variables appear linearly in the objective function and the dynamical equations. Therefore, the optimal solutions may exhibit both bang-bang and singular subarcs. Unfortunately, the theory for linear problems of that type is not as well developed as for regular problems, in particular with respect to second order sufficiency conditions. This results in serious problems in developing real-time capable methods to approximate optimal solutions in the presence of data perturbations. In this paper, two discretization methods are presented by which linear optimal control problems can be transcribed into nonlinear programming problems. Based on a stability and sensitivity analysis of the resulting nonlinear programming problems it is possible to compute sensitivity differentials for the discretized problems, by means of which near-optimal solutions can now be computed in real-time for linear problems, too. The performance of one of these methods is demonstrated for the optimal control of a batch reactor.", 
    "editor": [
      {
        "familyName": "Gr\u00f6tschel", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Krumke", 
        "givenName": "Sven O.", 
        "type": "Person"
      }, 
      {
        "familyName": "Rambau", 
        "givenName": "J\u00f6rg", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-04331-8_9", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-07633-6", 
        "978-3-662-04331-8"
      ], 
      "name": "Online Optimization of Large Scale Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "optimal control problem", 
      "nonlinear programming problem", 
      "optimal control", 
      "optimal solution", 
      "linear problem", 
      "control problem", 
      "singular optimal control problems", 
      "bang-bang", 
      "programming problem", 
      "second-order sufficiency conditions", 
      "singular subarcs", 
      "dynamical equations", 
      "sensitivity differentials", 
      "discretization method", 
      "regular problems", 
      "sufficiency conditions", 
      "time solution", 
      "objective function", 
      "data perturbation", 
      "control variables", 
      "problem", 
      "solution", 
      "subarcs", 
      "capable method", 
      "sensitivity analysis", 
      "equations", 
      "perturbations", 
      "theory", 
      "real-time capable method", 
      "variables", 
      "applications", 
      "function", 
      "stability", 
      "control", 
      "respect", 
      "differential", 
      "means", 
      "performance", 
      "reactor", 
      "conditions", 
      "analysis", 
      "types", 
      "serious problem", 
      "method", 
      "batch reactor", 
      "presence", 
      "paper"
    ], 
    "name": "Real-Time Solutions of Bang-Bang and Singular Optimal Control Problems", 
    "pagination": "129-142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014138682"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-04331-8_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-04331-8_9", 
      "https://app.dimensions.ai/details/publication/pub.1014138682"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_190.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-04331-8_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04331-8_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04331-8_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04331-8_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04331-8_9'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      72 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-04331-8_9 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nd7af3cdd665b4d22a7754ddab3b93531
4 schema:datePublished 2001
5 schema:datePublishedReg 2001-01-01
6 schema:description In many applications of optimal control some or all of the control variables appear linearly in the objective function and the dynamical equations. Therefore, the optimal solutions may exhibit both bang-bang and singular subarcs. Unfortunately, the theory for linear problems of that type is not as well developed as for regular problems, in particular with respect to second order sufficiency conditions. This results in serious problems in developing real-time capable methods to approximate optimal solutions in the presence of data perturbations. In this paper, two discretization methods are presented by which linear optimal control problems can be transcribed into nonlinear programming problems. Based on a stability and sensitivity analysis of the resulting nonlinear programming problems it is possible to compute sensitivity differentials for the discretized problems, by means of which near-optimal solutions can now be computed in real-time for linear problems, too. The performance of one of these methods is demonstrated for the optimal control of a batch reactor.
7 schema:editor N9d01e06c95654786ada1526cd3672422
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N26cfad1f044749f396638a93a3bf25d6
11 schema:keywords analysis
12 applications
13 bang-bang
14 batch reactor
15 capable method
16 conditions
17 control
18 control problem
19 control variables
20 data perturbation
21 differential
22 discretization method
23 dynamical equations
24 equations
25 function
26 linear problem
27 means
28 method
29 nonlinear programming problem
30 objective function
31 optimal control
32 optimal control problem
33 optimal solution
34 paper
35 performance
36 perturbations
37 presence
38 problem
39 programming problem
40 reactor
41 real-time capable method
42 regular problems
43 respect
44 second-order sufficiency conditions
45 sensitivity analysis
46 sensitivity differentials
47 serious problem
48 singular optimal control problems
49 singular subarcs
50 solution
51 stability
52 subarcs
53 sufficiency conditions
54 theory
55 time solution
56 types
57 variables
58 schema:name Real-Time Solutions of Bang-Bang and Singular Optimal Control Problems
59 schema:pagination 129-142
60 schema:productId N9e3dd774876a4fa7b1b68c0f424ddb6b
61 Ne816b7de573e4eec81b49aad43f3f34a
62 schema:publisher Ne59ba35ce7964d5b8481a1acd225f224
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014138682
64 https://doi.org/10.1007/978-3-662-04331-8_9
65 schema:sdDatePublished 2022-09-02T16:11
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N29e10ff72b76498a97cb4f1e1b87e153
68 schema:url https://doi.org/10.1007/978-3-662-04331-8_9
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N26cfad1f044749f396638a93a3bf25d6 schema:isbn 978-3-642-07633-6
73 978-3-662-04331-8
74 schema:name Online Optimization of Large Scale Systems
75 rdf:type schema:Book
76 N29e10ff72b76498a97cb4f1e1b87e153 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N4b2579c4bae6458496129dfe5981383a schema:familyName Grötschel
79 schema:givenName Martin
80 rdf:type schema:Person
81 N6f3b4d96f3ca4606a90f973195d6f444 rdf:first Nced3d89370dd4418ac4fe980af822823
82 rdf:rest Nbbff5ed2e3854603bb339227d92ad282
83 N9d01e06c95654786ada1526cd3672422 rdf:first N4b2579c4bae6458496129dfe5981383a
84 rdf:rest N6f3b4d96f3ca4606a90f973195d6f444
85 N9e3dd774876a4fa7b1b68c0f424ddb6b schema:name dimensions_id
86 schema:value pub.1014138682
87 rdf:type schema:PropertyValue
88 Nb07e0f5b85bd498dac69229ac7f04f9a rdf:first sg:person.011076136407.95
89 rdf:rest rdf:nil
90 Nbbff5ed2e3854603bb339227d92ad282 rdf:first Ne8d17b9a28d7457c9bcef4249cb98ed1
91 rdf:rest rdf:nil
92 Nc3a9d894dce24129afea0aa371e50606 rdf:first sg:person.014543723551.22
93 rdf:rest Nb07e0f5b85bd498dac69229ac7f04f9a
94 Nced3d89370dd4418ac4fe980af822823 schema:familyName Krumke
95 schema:givenName Sven O.
96 rdf:type schema:Person
97 Nd7af3cdd665b4d22a7754ddab3b93531 rdf:first sg:person.010737342427.59
98 rdf:rest Nc3a9d894dce24129afea0aa371e50606
99 Ne59ba35ce7964d5b8481a1acd225f224 schema:name Springer Nature
100 rdf:type schema:Organisation
101 Ne816b7de573e4eec81b49aad43f3f34a schema:name doi
102 schema:value 10.1007/978-3-662-04331-8_9
103 rdf:type schema:PropertyValue
104 Ne8d17b9a28d7457c9bcef4249cb98ed1 schema:familyName Rambau
105 schema:givenName Jörg
106 rdf:type schema:Person
107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
108 schema:name Mathematical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
111 schema:name Applied Mathematics
112 rdf:type schema:DefinedTerm
113 sg:person.010737342427.59 schema:affiliation grid-institutes:grid.7384.8
114 schema:familyName Büskens
115 schema:givenName Christof
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010737342427.59
117 rdf:type schema:Person
118 sg:person.011076136407.95 schema:affiliation grid-institutes:grid.7384.8
119 schema:familyName Winderl
120 schema:givenName Susanne
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011076136407.95
122 rdf:type schema:Person
123 sg:person.014543723551.22 schema:affiliation grid-institutes:grid.7384.8
124 schema:familyName Pesch
125 schema:givenName Hans Josef
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
127 rdf:type schema:Person
128 grid-institutes:grid.7384.8 schema:alternateName Lehrstuhl für Ingenieurmathematik, Universität Bayreuth, Germany
129 schema:name Lehrstuhl für Ingenieurmathematik, Universität Bayreuth, Germany
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...