Towards Nonlinear Model-Based Predictive Optimal Control of Large-Scale Process Models with Application to Air Separation Plants View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Thomas Kronseder , Oskar von Stryk , Roland Bulirsch , Andreas Kröner

ABSTRACT

We propose a concept for model predictive control of large-scale dynamical systems. This concept has been designed for the optimal control of chemical engineering processes, in particular for cryogenic air separation plants which are modelled by large systems of coupled differential and algebraic equations of (differential) index two with state dependent discontinuities. Our concept considers different time scales for various tasks which are prescribed by the real-time nature of the process of interest. In this paper (items refer to Figure 4) the components (a)-(d) and (f) of the general concept are considered in detail. Until now there has been a lack of a clear concept for real-time optimality. Therefore, we conclude by discussing some fundamental issues of the notion of real-time optimality. More... »

PAGES

385-410

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-04331-8_21

DOI

http://dx.doi.org/10.1007/978-3-662-04331-8_21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035800959


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr H\u00f6here Mathematik und Numerische Mathematik, Technische Universit\u00e4t M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Lehrstuhl f\u00fcr H\u00f6here Mathematik und Numerische Mathematik, Technische Universit\u00e4t M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kronseder", 
        "givenName": "Thomas", 
        "id": "sg:person.07445634047.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445634047.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fachgebiet Simulation und Systemoptimierung, Technische Universit\u00e4t Darmstadt, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Fachgebiet Simulation und Systemoptimierung, Technische Universit\u00e4t Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Stryk", 
        "givenName": "Oskar", 
        "id": "sg:person.014313516176.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313516176.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr H\u00f6here Mathematik und Numerische Mathematik, Technische Universit\u00e4t M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Lehrstuhl f\u00fcr H\u00f6here Mathematik und Numerische Mathematik, Technische Universit\u00e4t M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bulirsch", 
        "givenName": "Roland", 
        "id": "sg:person.0767272315.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767272315.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Linde AG, Process Engineering and Contracting Division, H\u00f6llriegelskreuth, Germany", 
          "id": "http://www.grid.ac/institutes/grid.425251.5", 
          "name": [
            "Linde AG, Process Engineering and Contracting Division, H\u00f6llriegelskreuth, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kr\u00f6ner", 
        "givenName": "Andreas", 
        "id": "sg:person.016547172442.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016547172442.00"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "We propose a concept for model predictive control of large-scale dynamical systems. This concept has been designed for the optimal control of chemical engineering processes, in particular for cryogenic air separation plants which are modelled by large systems of coupled differential and algebraic equations of (differential) index two with state dependent discontinuities. Our concept considers different time scales for various tasks which are prescribed by the real-time nature of the process of interest. In this paper (items refer to Figure 4) the components (a)-(d) and (f) of the general concept are considered in detail. Until now there has been a lack of a clear concept for real-time optimality. Therefore, we conclude by discussing some fundamental issues of the notion of real-time optimality.", 
    "editor": [
      {
        "familyName": "Gr\u00f6tschel", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Krumke", 
        "givenName": "Sven O.", 
        "type": "Person"
      }, 
      {
        "familyName": "Rambau", 
        "givenName": "J\u00f6rg", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-04331-8_21", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-07633-6", 
        "978-3-662-04331-8"
      ], 
      "name": "Online Optimization of Large Scale Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "optimal control", 
      "large-scale dynamical systems", 
      "state-dependent discontinuities", 
      "air separation plant", 
      "large-scale process models", 
      "model predictive control", 
      "predictive optimal control", 
      "dynamical systems", 
      "algebraic equations", 
      "separation plant", 
      "predictive control", 
      "cryogenic air separation plants", 
      "chemical engineering processes", 
      "nonlinear model", 
      "process of interest", 
      "large systems", 
      "index two", 
      "optimality", 
      "different time scales", 
      "engineering process", 
      "time scales", 
      "process model", 
      "equations", 
      "general concept", 
      "fundamental issues", 
      "model", 
      "real-time nature", 
      "discontinuities", 
      "system", 
      "concept", 
      "process", 
      "control", 
      "applications", 
      "notion", 
      "detail", 
      "two", 
      "plants", 
      "clear concept", 
      "components", 
      "interest", 
      "nature", 
      "scale", 
      "task", 
      "issues", 
      "lack", 
      "paper"
    ], 
    "name": "Towards Nonlinear Model-Based Predictive Optimal Control of Large-Scale Process Models with Application to Air Separation Plants", 
    "pagination": "385-410", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035800959"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-04331-8_21"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-04331-8_21", 
      "https://app.dimensions.ai/details/publication/pub.1035800959"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_26.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-04331-8_21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04331-8_21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04331-8_21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04331-8_21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04331-8_21'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      72 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-04331-8_21 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N16a59bb754a84518b1a6c2d9768348c5
4 schema:datePublished 2001
5 schema:datePublishedReg 2001-01-01
6 schema:description We propose a concept for model predictive control of large-scale dynamical systems. This concept has been designed for the optimal control of chemical engineering processes, in particular for cryogenic air separation plants which are modelled by large systems of coupled differential and algebraic equations of (differential) index two with state dependent discontinuities. Our concept considers different time scales for various tasks which are prescribed by the real-time nature of the process of interest. In this paper (items refer to Figure 4) the components (a)-(d) and (f) of the general concept are considered in detail. Until now there has been a lack of a clear concept for real-time optimality. Therefore, we conclude by discussing some fundamental issues of the notion of real-time optimality.
7 schema:editor Nc5e57b5839b84f2b8178fd6251eeda24
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N29c4823fd0a94d589c27484c27353b9e
12 schema:keywords air separation plant
13 algebraic equations
14 applications
15 chemical engineering processes
16 clear concept
17 components
18 concept
19 control
20 cryogenic air separation plants
21 detail
22 different time scales
23 discontinuities
24 dynamical systems
25 engineering process
26 equations
27 fundamental issues
28 general concept
29 index two
30 interest
31 issues
32 lack
33 large systems
34 large-scale dynamical systems
35 large-scale process models
36 model
37 model predictive control
38 nature
39 nonlinear model
40 notion
41 optimal control
42 optimality
43 paper
44 plants
45 predictive control
46 predictive optimal control
47 process
48 process model
49 process of interest
50 real-time nature
51 scale
52 separation plant
53 state-dependent discontinuities
54 system
55 task
56 time scales
57 two
58 schema:name Towards Nonlinear Model-Based Predictive Optimal Control of Large-Scale Process Models with Application to Air Separation Plants
59 schema:pagination 385-410
60 schema:productId N15ed9e6066ea4967810cd78d092df67e
61 N208e47ed808540d39230739490d43cf0
62 schema:publisher Nd068d587599e4914899f7136adbd5e4f
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035800959
64 https://doi.org/10.1007/978-3-662-04331-8_21
65 schema:sdDatePublished 2022-06-01T22:30
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Na4733a31e18c4be89d87b46dd8169032
68 schema:url https://doi.org/10.1007/978-3-662-04331-8_21
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N145cd2b670e54bf1b5cf90ad9669a198 schema:familyName Grötschel
73 schema:givenName Martin
74 rdf:type schema:Person
75 N15ed9e6066ea4967810cd78d092df67e schema:name doi
76 schema:value 10.1007/978-3-662-04331-8_21
77 rdf:type schema:PropertyValue
78 N16a59bb754a84518b1a6c2d9768348c5 rdf:first sg:person.07445634047.41
79 rdf:rest N7aa0d9fd1f8240558b4e653762d811b5
80 N194d6dc9bd8f4719bf99e8ce628bef16 rdf:first N24e48d9771104976a91d6881d08bb026
81 rdf:rest rdf:nil
82 N208e47ed808540d39230739490d43cf0 schema:name dimensions_id
83 schema:value pub.1035800959
84 rdf:type schema:PropertyValue
85 N24e48d9771104976a91d6881d08bb026 schema:familyName Rambau
86 schema:givenName Jörg
87 rdf:type schema:Person
88 N29c4823fd0a94d589c27484c27353b9e schema:isbn 978-3-642-07633-6
89 978-3-662-04331-8
90 schema:name Online Optimization of Large Scale Systems
91 rdf:type schema:Book
92 N2ea512da17dd46138abba787afc6ab2f schema:familyName Krumke
93 schema:givenName Sven O.
94 rdf:type schema:Person
95 N7aa0d9fd1f8240558b4e653762d811b5 rdf:first sg:person.014313516176.44
96 rdf:rest Ne427bb9456c848fa87a455a68520e9ec
97 N9616d73681bc4172b7412c4d7fd63b5c rdf:first N2ea512da17dd46138abba787afc6ab2f
98 rdf:rest N194d6dc9bd8f4719bf99e8ce628bef16
99 Na4733a31e18c4be89d87b46dd8169032 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nc5e57b5839b84f2b8178fd6251eeda24 rdf:first N145cd2b670e54bf1b5cf90ad9669a198
102 rdf:rest N9616d73681bc4172b7412c4d7fd63b5c
103 Nc8ec35ca7ff3479cbfab42b07f3089e8 rdf:first sg:person.016547172442.00
104 rdf:rest rdf:nil
105 Nd068d587599e4914899f7136adbd5e4f schema:name Springer Nature
106 rdf:type schema:Organisation
107 Ne427bb9456c848fa87a455a68520e9ec rdf:first sg:person.0767272315.31
108 rdf:rest Nc8ec35ca7ff3479cbfab42b07f3089e8
109 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
110 schema:name Mathematical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
113 schema:name Applied Mathematics
114 rdf:type schema:DefinedTerm
115 sg:person.014313516176.44 schema:affiliation grid-institutes:grid.6546.1
116 schema:familyName von Stryk
117 schema:givenName Oskar
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313516176.44
119 rdf:type schema:Person
120 sg:person.016547172442.00 schema:affiliation grid-institutes:grid.425251.5
121 schema:familyName Kröner
122 schema:givenName Andreas
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016547172442.00
124 rdf:type schema:Person
125 sg:person.07445634047.41 schema:affiliation grid-institutes:grid.6936.a
126 schema:familyName Kronseder
127 schema:givenName Thomas
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445634047.41
129 rdf:type schema:Person
130 sg:person.0767272315.31 schema:affiliation grid-institutes:grid.6936.a
131 schema:familyName Bulirsch
132 schema:givenName Roland
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767272315.31
134 rdf:type schema:Person
135 grid-institutes:grid.425251.5 schema:alternateName Linde AG, Process Engineering and Contracting Division, Höllriegelskreuth, Germany
136 schema:name Linde AG, Process Engineering and Contracting Division, Höllriegelskreuth, Germany
137 rdf:type schema:Organization
138 grid-institutes:grid.6546.1 schema:alternateName Fachgebiet Simulation und Systemoptimierung, Technische Universität Darmstadt, Germany
139 schema:name Fachgebiet Simulation und Systemoptimierung, Technische Universität Darmstadt, Germany
140 rdf:type schema:Organization
141 grid-institutes:grid.6936.a schema:alternateName Lehrstuhl für Höhere Mathematik und Numerische Mathematik, Technische Universität München, Germany
142 schema:name Lehrstuhl für Höhere Mathematik und Numerische Mathematik, Technische Universität München, Germany
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...