On Modules Supported in the Nullcone View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Mark Shimozono

ABSTRACT

We discuss some conjectures for bases of the GL(n) × ℂ* — equivariant K-theory of the closure of the conjugacy class of a nilpotent n × n matrix. One basis is a canonical basis coming from Lusztig’s theory of canonical bases of affine Hecke algebras. The other (conjectural) basis has graded characters which, when expanded in terms of irreducible characters, has coefficient polynomials that are q-analogues of Littlewood-Richardson coefficients. More... »

PAGES

67-75

References to SciGraph publications

  • 1988-04. The Bethe Ansatz and the combinatorics of Young tableaux in JOURNAL OF SOVIET MATHEMATICS
  • Book

    TITLE

    Formal Power Series and Algebraic Combinatorics

    ISBN

    978-3-642-08662-5
    978-3-662-04166-6

    Author Affiliations

    From Grant

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-662-04166-6_6

    DOI

    http://dx.doi.org/10.1007/978-3-662-04166-6_6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046720669


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Virginia Tech", 
              "id": "https://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Department of Mathematics, Virginia Tech, Blacksburg, VA\u00a024061-0123, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shimozono", 
            "givenName": "Mark", 
            "id": "sg:person.011434620231.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011434620231.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01247088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017984059", 
              "https://doi.org/10.1007/bf01247088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.531807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058108380"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000", 
        "datePublishedReg": "2000-01-01", 
        "description": "We discuss some conjectures for bases of the GL(n) \u00d7 \u2102* \u2014 equivariant K-theory of the closure of the conjugacy class of a nilpotent n \u00d7 n matrix. One basis is a canonical basis coming from Lusztig\u2019s theory of canonical bases of affine Hecke algebras. The other (conjectural) basis has graded characters which, when expanded in terms of irreducible characters, has coefficient polynomials that are q-analogues of Littlewood-Richardson coefficients.", 
        "editor": [
          {
            "familyName": "Krob", 
            "givenName": "Daniel", 
            "type": "Person"
          }, 
          {
            "familyName": "Mikhalev", 
            "givenName": "Alexander A.", 
            "type": "Person"
          }, 
          {
            "familyName": "Mikhalev", 
            "givenName": "Alexander V.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-662-04166-6_6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3460138", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": {
          "isbn": [
            "978-3-642-08662-5", 
            "978-3-662-04166-6"
          ], 
          "name": "Formal Power Series and Algebraic Combinatorics", 
          "type": "Book"
        }, 
        "name": "On Modules Supported in the Nullcone", 
        "pagination": "67-75", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-662-04166-6_6"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "de8f0dd4ee4183c12f53393f37c35aff9bc53977afaf9f32a14432112e7f5c2d"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046720669"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-662-04166-6_6", 
          "https://app.dimensions.ai/details/publication/pub.1046720669"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T15:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000272.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-662-04166-6_6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04166-6_6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04166-6_6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04166-6_6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04166-6_6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    84 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-662-04166-6_6 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N2bafaea92f624ed2b0d45088d8bf64df
    4 schema:citation sg:pub.10.1007/bf01247088
    5 https://doi.org/10.1063/1.531807
    6 schema:datePublished 2000
    7 schema:datePublishedReg 2000-01-01
    8 schema:description We discuss some conjectures for bases of the GL(n) × ℂ* — equivariant K-theory of the closure of the conjugacy class of a nilpotent n × n matrix. One basis is a canonical basis coming from Lusztig’s theory of canonical bases of affine Hecke algebras. The other (conjectural) basis has graded characters which, when expanded in terms of irreducible characters, has coefficient polynomials that are q-analogues of Littlewood-Richardson coefficients.
    9 schema:editor N3849239bd8b247ffa95b3b0f7900a407
    10 schema:genre chapter
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N976c4c056a624d0092ada3bb41d400e2
    14 schema:name On Modules Supported in the Nullcone
    15 schema:pagination 67-75
    16 schema:productId N0239b29b154b4440b430de20f534498c
    17 N31354f3b5bd04e979fdb8a4b77ec2681
    18 N8a31543f18654695a939270fc214557c
    19 schema:publisher N33ecfcfd3e58461bbf63f369d3d50b13
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046720669
    21 https://doi.org/10.1007/978-3-662-04166-6_6
    22 schema:sdDatePublished 2019-04-15T15:23
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N99a2c72b76f8414ea6cc1456b7cf1db8
    25 schema:url http://link.springer.com/10.1007/978-3-662-04166-6_6
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset chapters
    28 rdf:type schema:Chapter
    29 N0239b29b154b4440b430de20f534498c schema:name readcube_id
    30 schema:value de8f0dd4ee4183c12f53393f37c35aff9bc53977afaf9f32a14432112e7f5c2d
    31 rdf:type schema:PropertyValue
    32 N0fc3ebefbbff46f4a0feb13ec9f1e7e2 schema:familyName Mikhalev
    33 schema:givenName Alexander A.
    34 rdf:type schema:Person
    35 N2bafaea92f624ed2b0d45088d8bf64df rdf:first sg:person.011434620231.61
    36 rdf:rest rdf:nil
    37 N31354f3b5bd04e979fdb8a4b77ec2681 schema:name dimensions_id
    38 schema:value pub.1046720669
    39 rdf:type schema:PropertyValue
    40 N33ecfcfd3e58461bbf63f369d3d50b13 schema:location Berlin, Heidelberg
    41 schema:name Springer Berlin Heidelberg
    42 rdf:type schema:Organisation
    43 N3849239bd8b247ffa95b3b0f7900a407 rdf:first N6b147ea8580b43a2b53c8c32ffba959d
    44 rdf:rest Na7cb97de490745ff8e789f0d10938872
    45 N6b147ea8580b43a2b53c8c32ffba959d schema:familyName Krob
    46 schema:givenName Daniel
    47 rdf:type schema:Person
    48 N8a31543f18654695a939270fc214557c schema:name doi
    49 schema:value 10.1007/978-3-662-04166-6_6
    50 rdf:type schema:PropertyValue
    51 N8f098a73c9f24cbebd62dff5b4678cbd schema:familyName Mikhalev
    52 schema:givenName Alexander V.
    53 rdf:type schema:Person
    54 N976c4c056a624d0092ada3bb41d400e2 schema:isbn 978-3-642-08662-5
    55 978-3-662-04166-6
    56 schema:name Formal Power Series and Algebraic Combinatorics
    57 rdf:type schema:Book
    58 N99a2c72b76f8414ea6cc1456b7cf1db8 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 Na7cb97de490745ff8e789f0d10938872 rdf:first N0fc3ebefbbff46f4a0feb13ec9f1e7e2
    61 rdf:rest Nb3c111446691487ea60e61534dcfbf43
    62 Nb3c111446691487ea60e61534dcfbf43 rdf:first N8f098a73c9f24cbebd62dff5b4678cbd
    63 rdf:rest rdf:nil
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Pure Mathematics
    69 rdf:type schema:DefinedTerm
    70 sg:grant.3460138 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-662-04166-6_6
    71 rdf:type schema:MonetaryGrant
    72 sg:person.011434620231.61 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
    73 schema:familyName Shimozono
    74 schema:givenName Mark
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011434620231.61
    76 rdf:type schema:Person
    77 sg:pub.10.1007/bf01247088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017984059
    78 https://doi.org/10.1007/bf01247088
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1063/1.531807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058108380
    81 rdf:type schema:CreativeWork
    82 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
    83 schema:name Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
    84 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...