Exopolymer Microdomains as a Structuring Agent for Heterogeneity Within Microbial Biofilms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Alan W. Decho

ABSTRACT

It is now well-recognized that the majority, and often most active fractions, of microbial cells in many natural systems occur as surface-associated biofilms. In sedimentary environments, biofilm formation represents an important functional adaptation for microbial life. At the level of an individual sediment particle, the biofilm community represents a cacophony of cellular and extracellular processes enclosed within an amorphous biofilm. Recent studies using new analytical approaches now suggest that the seemingly amorphous biofilm instead may be a highly structured system, one in which microbial cells actively manipulate their extracellular polymers and overall microenvironment to accomplish specific tasks. At microspatial scales (nanometers to micrometers), biofilm polymers are important in sequestering of nutrients, localization of extracellular enzymes, and providing a protective and stabilizing microenvironment for cells. Examination of the three-dimensional nature of microbial biofilm communities and activities through the use of nuclear magnetic resonance (NMR) spectroscopy, confocal laser microscopy (CLM), atomic-force microscopy (AFM) and other techniques are beginning to provide quantitative evidence for microscale partitioning within biofilms. In light of these new data, the biofilm is explored here as an important structural matrix to partition microbial extracellular activities and effectively promote heterogeneity over very small (i.e., molecular) spatial scales. Structuring and partitioning may occur through the formation of “exopolymer-mediated microdomains.” These are regions of a biofilm matrix where specific types of exopolymers are concentrated and impart unique physical/chemical properties to the biofilm. Accumulating evidence, derived from isotope sorption studies, electron microscopy, and CLM supports this idea. The presence of exopolymer microdomains may provide microorganisms with a structuring mechanism to spatially segregate extracellular activities over small spatial scales. More... »

PAGES

9-15

References to SciGraph publications

Book

TITLE

Microbial Sediments

ISBN

978-3-642-08275-7
978-3-662-04036-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-04036-2_2

DOI

http://dx.doi.org/10.1007/978-3-662-04036-2_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033444797


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of South Carolina", 
          "id": "https://www.grid.ac/institutes/grid.254567.7", 
          "name": [
            "Department of Environmental Health Sciences, School of Public Health, University of South Carolina, Columbia, SC\u00a029208, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Decho", 
        "givenName": "Alan W.", 
        "id": "sg:person.0626754271.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626754271.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.mi.49.100195.003431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005220318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292340a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006608222", 
          "https://doi.org/10.1038/292340a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-7012(92)90045-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007046069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-7012(92)90045-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007046069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08927019309386264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007741596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(85)90303-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008500491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(85)90303-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008500491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3090-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010371003", 
          "https://doi.org/10.1007/978-1-4612-3090-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3090-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010371003", 
          "https://doi.org/10.1007/978-1-4612-3090-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es9509184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013473389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es9509184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013473389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00182411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019860268", 
          "https://doi.org/10.1007/bf00182411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00182411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019860268", 
          "https://doi.org/10.1007/bf00182411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470720905.ch15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034814236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.1990.35.6.1343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035148138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0178-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037982810", 
          "https://doi.org/10.1038/scientificamerican0178-86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01490459009377874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039726344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp00019a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041390036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.1995.40.2.0273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041445845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01579285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043836534", 
          "https://doi.org/10.1007/bf01579285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01579285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043836534", 
          "https://doi.org/10.1007/bf01579285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/m92-128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044787018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-9351(85)90107-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045410374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260410710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051447980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0025315400034780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054809630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0025315400034780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054809630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.585213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062195260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.173.20.6558-6567.1991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062719909"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "It is now well-recognized that the majority, and often most active fractions, of microbial cells in many natural systems occur as surface-associated biofilms. In sedimentary environments, biofilm formation represents an important functional adaptation for microbial life. At the level of an individual sediment particle, the biofilm community represents a cacophony of cellular and extracellular processes enclosed within an amorphous biofilm. Recent studies using new analytical approaches now suggest that the seemingly amorphous biofilm instead may be a highly structured system, one in which microbial cells actively manipulate their extracellular polymers and overall microenvironment to accomplish specific tasks. At microspatial scales (nanometers to micrometers), biofilm polymers are important in sequestering of nutrients, localization of extracellular enzymes, and providing a protective and stabilizing microenvironment for cells. Examination of the three-dimensional nature of microbial biofilm communities and activities through the use of nuclear magnetic resonance (NMR) spectroscopy, confocal laser microscopy (CLM), atomic-force microscopy (AFM) and other techniques are beginning to provide quantitative evidence for microscale partitioning within biofilms. In light of these new data, the biofilm is explored here as an important structural matrix to partition microbial extracellular activities and effectively promote heterogeneity over very small (i.e., molecular) spatial scales. Structuring and partitioning may occur through the formation of \u201cexopolymer-mediated microdomains.\u201d These are regions of a biofilm matrix where specific types of exopolymers are concentrated and impart unique physical/chemical properties to the biofilm. Accumulating evidence, derived from isotope sorption studies, electron microscopy, and CLM supports this idea. The presence of exopolymer microdomains may provide microorganisms with a structuring mechanism to spatially segregate extracellular activities over small spatial scales.", 
    "editor": [
      {
        "familyName": "Riding", 
        "givenName": "Robert E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Awramik", 
        "givenName": "Stanley M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-04036-2_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-08275-7", 
        "978-3-662-04036-2"
      ], 
      "name": "Microbial Sediments", 
      "type": "Book"
    }, 
    "name": "Exopolymer Microdomains as a Structuring Agent for Heterogeneity Within Microbial Biofilms", 
    "pagination": "9-15", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-04036-2_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f52e1d750f1ffd221a0699b73c7eef1adcf3fa0f5f101861e7fcdd89f1e5576"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033444797"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-04036-2_2", 
      "https://app.dimensions.ai/details/publication/pub.1033444797"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000264.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-04036-2_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04036-2_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04036-2_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04036-2_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04036-2_2'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-04036-2_2 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author N5e051c52cc72450993cfefa180ea943a
4 schema:citation sg:pub.10.1007/978-1-4612-3090-8_4
5 sg:pub.10.1007/bf00182411
6 sg:pub.10.1007/bf01579285
7 sg:pub.10.1038/292340a0
8 sg:pub.10.1038/scientificamerican0178-86
9 https://doi.org/10.1002/9780470720905.ch15
10 https://doi.org/10.1002/bit.260410710
11 https://doi.org/10.1016/0013-9351(85)90107-0
12 https://doi.org/10.1016/0043-1354(85)90303-3
13 https://doi.org/10.1016/0167-7012(92)90045-6
14 https://doi.org/10.1017/s0025315400034780
15 https://doi.org/10.1021/bp00019a006
16 https://doi.org/10.1021/es9509184
17 https://doi.org/10.1080/01490459009377874
18 https://doi.org/10.1080/08927019309386264
19 https://doi.org/10.1116/1.585213
20 https://doi.org/10.1128/jb.173.20.6558-6567.1991
21 https://doi.org/10.1139/m92-128
22 https://doi.org/10.1146/annurev.mi.49.100195.003431
23 https://doi.org/10.4319/lo.1990.35.6.1343
24 https://doi.org/10.4319/lo.1995.40.2.0273
25 schema:datePublished 2000
26 schema:datePublishedReg 2000-01-01
27 schema:description It is now well-recognized that the majority, and often most active fractions, of microbial cells in many natural systems occur as surface-associated biofilms. In sedimentary environments, biofilm formation represents an important functional adaptation for microbial life. At the level of an individual sediment particle, the biofilm community represents a cacophony of cellular and extracellular processes enclosed within an amorphous biofilm. Recent studies using new analytical approaches now suggest that the seemingly amorphous biofilm instead may be a highly structured system, one in which microbial cells actively manipulate their extracellular polymers and overall microenvironment to accomplish specific tasks. At microspatial scales (nanometers to micrometers), biofilm polymers are important in sequestering of nutrients, localization of extracellular enzymes, and providing a protective and stabilizing microenvironment for cells. Examination of the three-dimensional nature of microbial biofilm communities and activities through the use of nuclear magnetic resonance (NMR) spectroscopy, confocal laser microscopy (CLM), atomic-force microscopy (AFM) and other techniques are beginning to provide quantitative evidence for microscale partitioning within biofilms. In light of these new data, the biofilm is explored here as an important structural matrix to partition microbial extracellular activities and effectively promote heterogeneity over very small (i.e., molecular) spatial scales. Structuring and partitioning may occur through the formation of “exopolymer-mediated microdomains.” These are regions of a biofilm matrix where specific types of exopolymers are concentrated and impart unique physical/chemical properties to the biofilm. Accumulating evidence, derived from isotope sorption studies, electron microscopy, and CLM supports this idea. The presence of exopolymer microdomains may provide microorganisms with a structuring mechanism to spatially segregate extracellular activities over small spatial scales.
28 schema:editor Nf5820f1919e545b8961c0aeaff566524
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N5cdc5f42e5b24fabbbceff4a99f3795f
33 schema:name Exopolymer Microdomains as a Structuring Agent for Heterogeneity Within Microbial Biofilms
34 schema:pagination 9-15
35 schema:productId N3da916bbff9e4f67bb4f901efa73e6f0
36 N6b18c23194984edbbba4cdf589e5f2fa
37 N76c8a30a04d84e9c9251583f00ee83f2
38 schema:publisher N0c14a897a063460abd41142427c71a53
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033444797
40 https://doi.org/10.1007/978-3-662-04036-2_2
41 schema:sdDatePublished 2019-04-15T18:12
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N4950a38eafa24082bda4aa42b136a13b
44 schema:url http://link.springer.com/10.1007/978-3-662-04036-2_2
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N0c14a897a063460abd41142427c71a53 schema:location Berlin, Heidelberg
49 schema:name Springer Berlin Heidelberg
50 rdf:type schema:Organisation
51 N3da916bbff9e4f67bb4f901efa73e6f0 schema:name readcube_id
52 schema:value 9f52e1d750f1ffd221a0699b73c7eef1adcf3fa0f5f101861e7fcdd89f1e5576
53 rdf:type schema:PropertyValue
54 N4950a38eafa24082bda4aa42b136a13b schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N5cdc5f42e5b24fabbbceff4a99f3795f schema:isbn 978-3-642-08275-7
57 978-3-662-04036-2
58 schema:name Microbial Sediments
59 rdf:type schema:Book
60 N5dc97a3f97144bac95cee9af9873b263 schema:familyName Riding
61 schema:givenName Robert E.
62 rdf:type schema:Person
63 N5e051c52cc72450993cfefa180ea943a rdf:first sg:person.0626754271.47
64 rdf:rest rdf:nil
65 N6b18c23194984edbbba4cdf589e5f2fa schema:name doi
66 schema:value 10.1007/978-3-662-04036-2_2
67 rdf:type schema:PropertyValue
68 N6b5be03c8118440e8145607b7da3b54f rdf:first Ncf91b953e2e648c0bc10dce7f3fe4bd8
69 rdf:rest rdf:nil
70 N76c8a30a04d84e9c9251583f00ee83f2 schema:name dimensions_id
71 schema:value pub.1033444797
72 rdf:type schema:PropertyValue
73 Ncf91b953e2e648c0bc10dce7f3fe4bd8 schema:familyName Awramik
74 schema:givenName Stanley M.
75 rdf:type schema:Person
76 Nf5820f1919e545b8961c0aeaff566524 rdf:first N5dc97a3f97144bac95cee9af9873b263
77 rdf:rest N6b5be03c8118440e8145607b7da3b54f
78 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
79 schema:name Biological Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
82 schema:name Microbiology
83 rdf:type schema:DefinedTerm
84 sg:person.0626754271.47 schema:affiliation https://www.grid.ac/institutes/grid.254567.7
85 schema:familyName Decho
86 schema:givenName Alan W.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626754271.47
88 rdf:type schema:Person
89 sg:pub.10.1007/978-1-4612-3090-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010371003
90 https://doi.org/10.1007/978-1-4612-3090-8_4
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf00182411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019860268
93 https://doi.org/10.1007/bf00182411
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01579285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043836534
96 https://doi.org/10.1007/bf01579285
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/292340a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006608222
99 https://doi.org/10.1038/292340a0
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/scientificamerican0178-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037982810
102 https://doi.org/10.1038/scientificamerican0178-86
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/9780470720905.ch15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034814236
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/bit.260410710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051447980
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0013-9351(85)90107-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045410374
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0043-1354(85)90303-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008500491
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0167-7012(92)90045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007046069
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1017/s0025315400034780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054809630
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1021/bp00019a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041390036
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/es9509184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013473389
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/01490459009377874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039726344
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1080/08927019309386264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007741596
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1116/1.585213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062195260
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1128/jb.173.20.6558-6567.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062719909
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1139/m92-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044787018
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1146/annurev.mi.49.100195.003431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005220318
131 rdf:type schema:CreativeWork
132 https://doi.org/10.4319/lo.1990.35.6.1343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035148138
133 rdf:type schema:CreativeWork
134 https://doi.org/10.4319/lo.1995.40.2.0273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041445845
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.254567.7 schema:alternateName University of South Carolina
137 schema:name Department of Environmental Health Sciences, School of Public Health, University of South Carolina, Columbia, SC 29208, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...