Exopolymer Microdomains as a Structuring Agent for Heterogeneity Within Microbial Biofilms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Alan W. Decho

ABSTRACT

It is now well-recognized that the majority, and often most active fractions, of microbial cells in many natural systems occur as surface-associated biofilms. In sedimentary environments, biofilm formation represents an important functional adaptation for microbial life. At the level of an individual sediment particle, the biofilm community represents a cacophony of cellular and extracellular processes enclosed within an amorphous biofilm. Recent studies using new analytical approaches now suggest that the seemingly amorphous biofilm instead may be a highly structured system, one in which microbial cells actively manipulate their extracellular polymers and overall microenvironment to accomplish specific tasks. At microspatial scales (nanometers to micrometers), biofilm polymers are important in sequestering of nutrients, localization of extracellular enzymes, and providing a protective and stabilizing microenvironment for cells. Examination of the three-dimensional nature of microbial biofilm communities and activities through the use of nuclear magnetic resonance (NMR) spectroscopy, confocal laser microscopy (CLM), atomic-force microscopy (AFM) and other techniques are beginning to provide quantitative evidence for microscale partitioning within biofilms. In light of these new data, the biofilm is explored here as an important structural matrix to partition microbial extracellular activities and effectively promote heterogeneity over very small (i.e., molecular) spatial scales. Structuring and partitioning may occur through the formation of “exopolymer-mediated microdomains.” These are regions of a biofilm matrix where specific types of exopolymers are concentrated and impart unique physical/chemical properties to the biofilm. Accumulating evidence, derived from isotope sorption studies, electron microscopy, and CLM supports this idea. The presence of exopolymer microdomains may provide microorganisms with a structuring mechanism to spatially segregate extracellular activities over small spatial scales. More... »

PAGES

9-15

Book

TITLE

Microbial Sediments

ISBN

978-3-642-08275-7
978-3-662-04036-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-04036-2_2

DOI

http://dx.doi.org/10.1007/978-3-662-04036-2_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033444797


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of South Carolina", 
          "id": "https://www.grid.ac/institutes/grid.254567.7", 
          "name": [
            "Department of Environmental Health Sciences, School of Public Health, University of South Carolina, Columbia, SC\u00a029208, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Decho", 
        "givenName": "Alan W.", 
        "id": "sg:person.0626754271.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626754271.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.mi.49.100195.003431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005220318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/292340a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006608222", 
          "https://doi.org/10.1038/292340a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-7012(92)90045-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007046069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-7012(92)90045-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007046069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08927019309386264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007741596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(85)90303-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008500491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(85)90303-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008500491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3090-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010371003", 
          "https://doi.org/10.1007/978-1-4612-3090-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3090-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010371003", 
          "https://doi.org/10.1007/978-1-4612-3090-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es9509184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013473389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es9509184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013473389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00182411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019860268", 
          "https://doi.org/10.1007/bf00182411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00182411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019860268", 
          "https://doi.org/10.1007/bf00182411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470720905.ch15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034814236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.1990.35.6.1343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035148138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0178-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037982810", 
          "https://doi.org/10.1038/scientificamerican0178-86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01490459009377874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039726344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp00019a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041390036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.1995.40.2.0273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041445845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01579285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043836534", 
          "https://doi.org/10.1007/bf01579285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01579285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043836534", 
          "https://doi.org/10.1007/bf01579285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/m92-128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044787018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-9351(85)90107-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045410374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260410710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051447980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0025315400034780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054809630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0025315400034780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054809630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.585213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062195260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.173.20.6558-6567.1991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062719909"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "It is now well-recognized that the majority, and often most active fractions, of microbial cells in many natural systems occur as surface-associated biofilms. In sedimentary environments, biofilm formation represents an important functional adaptation for microbial life. At the level of an individual sediment particle, the biofilm community represents a cacophony of cellular and extracellular processes enclosed within an amorphous biofilm. Recent studies using new analytical approaches now suggest that the seemingly amorphous biofilm instead may be a highly structured system, one in which microbial cells actively manipulate their extracellular polymers and overall microenvironment to accomplish specific tasks. At microspatial scales (nanometers to micrometers), biofilm polymers are important in sequestering of nutrients, localization of extracellular enzymes, and providing a protective and stabilizing microenvironment for cells. Examination of the three-dimensional nature of microbial biofilm communities and activities through the use of nuclear magnetic resonance (NMR) spectroscopy, confocal laser microscopy (CLM), atomic-force microscopy (AFM) and other techniques are beginning to provide quantitative evidence for microscale partitioning within biofilms. In light of these new data, the biofilm is explored here as an important structural matrix to partition microbial extracellular activities and effectively promote heterogeneity over very small (i.e., molecular) spatial scales. Structuring and partitioning may occur through the formation of \u201cexopolymer-mediated microdomains.\u201d These are regions of a biofilm matrix where specific types of exopolymers are concentrated and impart unique physical/chemical properties to the biofilm. Accumulating evidence, derived from isotope sorption studies, electron microscopy, and CLM supports this idea. The presence of exopolymer microdomains may provide microorganisms with a structuring mechanism to spatially segregate extracellular activities over small spatial scales.", 
    "editor": [
      {
        "familyName": "Riding", 
        "givenName": "Robert E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Awramik", 
        "givenName": "Stanley M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-04036-2_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-08275-7", 
        "978-3-662-04036-2"
      ], 
      "name": "Microbial Sediments", 
      "type": "Book"
    }, 
    "name": "Exopolymer Microdomains as a Structuring Agent for Heterogeneity Within Microbial Biofilms", 
    "pagination": "9-15", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-04036-2_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f52e1d750f1ffd221a0699b73c7eef1adcf3fa0f5f101861e7fcdd89f1e5576"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033444797"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-04036-2_2", 
      "https://app.dimensions.ai/details/publication/pub.1033444797"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000264.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-04036-2_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04036-2_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04036-2_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04036-2_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-04036-2_2'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-04036-2_2 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author N7c50dc67541d4c7b82ffc3369511ff2b
4 schema:citation sg:pub.10.1007/978-1-4612-3090-8_4
5 sg:pub.10.1007/bf00182411
6 sg:pub.10.1007/bf01579285
7 sg:pub.10.1038/292340a0
8 sg:pub.10.1038/scientificamerican0178-86
9 https://doi.org/10.1002/9780470720905.ch15
10 https://doi.org/10.1002/bit.260410710
11 https://doi.org/10.1016/0013-9351(85)90107-0
12 https://doi.org/10.1016/0043-1354(85)90303-3
13 https://doi.org/10.1016/0167-7012(92)90045-6
14 https://doi.org/10.1017/s0025315400034780
15 https://doi.org/10.1021/bp00019a006
16 https://doi.org/10.1021/es9509184
17 https://doi.org/10.1080/01490459009377874
18 https://doi.org/10.1080/08927019309386264
19 https://doi.org/10.1116/1.585213
20 https://doi.org/10.1128/jb.173.20.6558-6567.1991
21 https://doi.org/10.1139/m92-128
22 https://doi.org/10.1146/annurev.mi.49.100195.003431
23 https://doi.org/10.4319/lo.1990.35.6.1343
24 https://doi.org/10.4319/lo.1995.40.2.0273
25 schema:datePublished 2000
26 schema:datePublishedReg 2000-01-01
27 schema:description It is now well-recognized that the majority, and often most active fractions, of microbial cells in many natural systems occur as surface-associated biofilms. In sedimentary environments, biofilm formation represents an important functional adaptation for microbial life. At the level of an individual sediment particle, the biofilm community represents a cacophony of cellular and extracellular processes enclosed within an amorphous biofilm. Recent studies using new analytical approaches now suggest that the seemingly amorphous biofilm instead may be a highly structured system, one in which microbial cells actively manipulate their extracellular polymers and overall microenvironment to accomplish specific tasks. At microspatial scales (nanometers to micrometers), biofilm polymers are important in sequestering of nutrients, localization of extracellular enzymes, and providing a protective and stabilizing microenvironment for cells. Examination of the three-dimensional nature of microbial biofilm communities and activities through the use of nuclear magnetic resonance (NMR) spectroscopy, confocal laser microscopy (CLM), atomic-force microscopy (AFM) and other techniques are beginning to provide quantitative evidence for microscale partitioning within biofilms. In light of these new data, the biofilm is explored here as an important structural matrix to partition microbial extracellular activities and effectively promote heterogeneity over very small (i.e., molecular) spatial scales. Structuring and partitioning may occur through the formation of “exopolymer-mediated microdomains.” These are regions of a biofilm matrix where specific types of exopolymers are concentrated and impart unique physical/chemical properties to the biofilm. Accumulating evidence, derived from isotope sorption studies, electron microscopy, and CLM supports this idea. The presence of exopolymer microdomains may provide microorganisms with a structuring mechanism to spatially segregate extracellular activities over small spatial scales.
28 schema:editor N7a5379956f1d414e9b001ac62b064309
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N941b86cd5de64e3f84d0f1b1bab065a8
33 schema:name Exopolymer Microdomains as a Structuring Agent for Heterogeneity Within Microbial Biofilms
34 schema:pagination 9-15
35 schema:productId N4b1a29d88d1a4b9e9cbbb1bec2cc57b0
36 Nbdf5a9bb9cae425a8223230ff903cc24
37 Nf5fb9e9be8e74ef398c36f0e300c822e
38 schema:publisher N50987758e6f045168118184b89b7fbbe
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033444797
40 https://doi.org/10.1007/978-3-662-04036-2_2
41 schema:sdDatePublished 2019-04-15T18:12
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N73ccabc9a66f41b1adf32d4564b708ce
44 schema:url http://link.springer.com/10.1007/978-3-662-04036-2_2
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N22e844a393bd491e9aae59bff567dc66 schema:familyName Awramik
49 schema:givenName Stanley M.
50 rdf:type schema:Person
51 N4b1a29d88d1a4b9e9cbbb1bec2cc57b0 schema:name readcube_id
52 schema:value 9f52e1d750f1ffd221a0699b73c7eef1adcf3fa0f5f101861e7fcdd89f1e5576
53 rdf:type schema:PropertyValue
54 N50987758e6f045168118184b89b7fbbe schema:location Berlin, Heidelberg
55 schema:name Springer Berlin Heidelberg
56 rdf:type schema:Organisation
57 N73ccabc9a66f41b1adf32d4564b708ce schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N7a5379956f1d414e9b001ac62b064309 rdf:first Nc5d73125389e4334be7dee9fba679d16
60 rdf:rest Nc1a926cd3f8f4eb58548e1fb0693bb6b
61 N7c50dc67541d4c7b82ffc3369511ff2b rdf:first sg:person.0626754271.47
62 rdf:rest rdf:nil
63 N941b86cd5de64e3f84d0f1b1bab065a8 schema:isbn 978-3-642-08275-7
64 978-3-662-04036-2
65 schema:name Microbial Sediments
66 rdf:type schema:Book
67 Nbdf5a9bb9cae425a8223230ff903cc24 schema:name dimensions_id
68 schema:value pub.1033444797
69 rdf:type schema:PropertyValue
70 Nc1a926cd3f8f4eb58548e1fb0693bb6b rdf:first N22e844a393bd491e9aae59bff567dc66
71 rdf:rest rdf:nil
72 Nc5d73125389e4334be7dee9fba679d16 schema:familyName Riding
73 schema:givenName Robert E.
74 rdf:type schema:Person
75 Nf5fb9e9be8e74ef398c36f0e300c822e schema:name doi
76 schema:value 10.1007/978-3-662-04036-2_2
77 rdf:type schema:PropertyValue
78 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
79 schema:name Biological Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
82 schema:name Microbiology
83 rdf:type schema:DefinedTerm
84 sg:person.0626754271.47 schema:affiliation https://www.grid.ac/institutes/grid.254567.7
85 schema:familyName Decho
86 schema:givenName Alan W.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626754271.47
88 rdf:type schema:Person
89 sg:pub.10.1007/978-1-4612-3090-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010371003
90 https://doi.org/10.1007/978-1-4612-3090-8_4
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf00182411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019860268
93 https://doi.org/10.1007/bf00182411
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01579285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043836534
96 https://doi.org/10.1007/bf01579285
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/292340a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006608222
99 https://doi.org/10.1038/292340a0
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/scientificamerican0178-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037982810
102 https://doi.org/10.1038/scientificamerican0178-86
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/9780470720905.ch15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034814236
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/bit.260410710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051447980
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0013-9351(85)90107-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045410374
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0043-1354(85)90303-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008500491
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0167-7012(92)90045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007046069
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1017/s0025315400034780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054809630
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1021/bp00019a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041390036
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/es9509184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013473389
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/01490459009377874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039726344
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1080/08927019309386264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007741596
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1116/1.585213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062195260
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1128/jb.173.20.6558-6567.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062719909
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1139/m92-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044787018
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1146/annurev.mi.49.100195.003431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005220318
131 rdf:type schema:CreativeWork
132 https://doi.org/10.4319/lo.1990.35.6.1343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035148138
133 rdf:type schema:CreativeWork
134 https://doi.org/10.4319/lo.1995.40.2.0273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041445845
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.254567.7 schema:alternateName University of South Carolina
137 schema:name Department of Environmental Health Sciences, School of Public Health, University of South Carolina, Columbia, SC 29208, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...