Recent Developments in the Theory of Optical Gap Solitons View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

S. Trillo , C. Conti , A. de Rossi , G. Assanto

ABSTRACT

The coupling of counterpropagating waves in Bragg gratings is a linear resonant mechanism: it leads to frequency bandgaps in the spectral region(s) where the “through” propagation is exponentially damped thereby resulting into a reflective structure. This phenomenon, caused by a resonance between the grating and the light wavevectors, is clearly affected by any nonlinear change of the refractive index, i.e., by the optical Kerr effect at high intensities. Indeed cubic nonlinearities permit the propagation of bright localized (i.e., with exponentially decaying tails) envelopes with carrier frequency inside the linear stopband, known as gap solitons (GSs) [1–5]. This form of energy trapping, mediated by the interplay of nonlinearity and periodicity, is also important with reference to photonic bandgap materials [6–7], and turns out to be ubiquitous, taking place in several physical contexts [8–11]. Roughly speaking, a GS travels as a unit because those photons which tend to escape from the low-intensity tails of the envelope are reflected back towards the high-intensity portion where, in turn, the reflection is locally frustrated. More rigorously, GSs are chirped envelopes which behave according to two independent parameters: their position within the frequency gap and their velocity. Compared to other optical envelope solitons, GSs are slow in the sense that they can travel at any speed below the linear group-velocity of the light in the medium, including the remarkable limit of zero-velocity in the laboratory frame. Quite importantly, recent experiments have demonstrated that slow optical GSs can be successfully excited in fiber gratings in spite of their small nonlinearities [12, 13]. More... »

PAGES

233-248

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-03807-9_13

DOI

http://dx.doi.org/10.1007/978-3-662-03807-9_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020608296


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Ingegneria, Universit\u00e1 di Ferrara, via Saragat 1, 44100, Ferrara, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8484.0", 
          "name": [
            "Dipartimento di Ingegneria, Universit\u00e1 di Ferrara, via Saragat 1, 44100, Ferrara, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trillo", 
        "givenName": "S.", 
        "id": "sg:person.01242414260.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for the Physics of Matter, INFM-RM3 Division, via della Vasca Navale 84, 00146, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Electronic Engineering, Terza University of Roma, via della Vasca Navale 84, 00146, Roma, Italy", 
            "National Institute for the Physics of Matter, INFM-RM3 Division, via della Vasca Navale 84, 00146, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conti", 
        "givenName": "C.", 
        "id": "sg:person.01000607032.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000607032.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for the Physics of Matter, INFM-RM3 Division, via della Vasca Navale 84, 00146, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Electronic Engineering, Terza University of Roma, via della Vasca Navale 84, 00146, Roma, Italy", 
            "National Institute for the Physics of Matter, INFM-RM3 Division, via della Vasca Navale 84, 00146, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Rossi", 
        "givenName": "A.", 
        "id": "sg:person.0700111034.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700111034.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for the Physics of Matter, INFM-RM3 Division, via della Vasca Navale 84, 00146, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Electronic Engineering, Terza University of Roma, via della Vasca Navale 84, 00146, Roma, Italy", 
            "National Institute for the Physics of Matter, INFM-RM3 Division, via della Vasca Navale 84, 00146, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Assanto", 
        "givenName": "G.", 
        "id": "sg:person.01251003122.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251003122.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "The coupling of counterpropagating waves in Bragg gratings is a linear resonant mechanism: it leads to frequency bandgaps in the spectral region(s) where the \u201cthrough\u201d propagation is exponentially damped thereby resulting into a reflective structure. This phenomenon, caused by a resonance between the grating and the light wavevectors, is clearly affected by any nonlinear change of the refractive index, i.e., by the optical Kerr effect at high intensities. Indeed cubic nonlinearities permit the propagation of bright localized (i.e., with exponentially decaying tails) envelopes with carrier frequency inside the linear stopband, known as gap solitons (GSs) [1\u20135]. This form of energy trapping, mediated by the interplay of nonlinearity and periodicity, is also important with reference to photonic bandgap materials [6\u20137], and turns out to be ubiquitous, taking place in several physical contexts [8\u201311]. Roughly speaking, a GS travels as a unit because those photons which tend to escape from the low-intensity tails of the envelope are reflected back towards the high-intensity portion where, in turn, the reflection is locally frustrated. More rigorously, GSs are chirped envelopes which behave according to two independent parameters: their position within the frequency gap and their velocity. Compared to other optical envelope solitons, GSs are slow in the sense that they can travel at any speed below the linear group-velocity of the light in the medium, including the remarkable limit of zero-velocity in the laboratory frame. Quite importantly, recent experiments have demonstrated that slow optical GSs can be successfully excited in fiber gratings in spite of their small nonlinearities [12, 13].", 
    "editor": [
      {
        "familyName": "Zakharov", 
        "givenName": "V. E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wabnitz", 
        "givenName": "S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-03807-9_13", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-66314-0", 
        "978-3-662-03807-9"
      ], 
      "name": "Optical Solitons: Theoretical Challenges and Industrial Perspectives", 
      "type": "Book"
    }, 
    "keywords": [
      "optical gap solitons", 
      "gap solitons", 
      "optical Kerr effect", 
      "interplay of nonlinearity", 
      "photonic bandgap materials", 
      "low intensity tail", 
      "refractive index", 
      "Kerr effect", 
      "envelope solitons", 
      "light wavevector", 
      "Bragg grating", 
      "high-intensity portion", 
      "laboratory frame", 
      "resonant mechanism", 
      "frequency gap", 
      "fiber grating", 
      "bandgap materials", 
      "recent experiments", 
      "grating", 
      "solitons", 
      "frequency bandgap", 
      "small nonlinearity", 
      "remarkable limit", 
      "cubic nonlinearity", 
      "energy trapping", 
      "high intensity", 
      "carrier frequency", 
      "reflective structures", 
      "nonlinearity", 
      "nonlinear changes", 
      "photons", 
      "wavevector", 
      "bandgap", 
      "propagation", 
      "zero-velocity", 
      "resonance", 
      "trapping", 
      "waves", 
      "coupling", 
      "envelope", 
      "physical context", 
      "independent parameters", 
      "recent developments", 
      "light", 
      "periodicity", 
      "intensity", 
      "gap", 
      "stopband", 
      "velocity", 
      "limit", 
      "tail", 
      "theory", 
      "phenomenon", 
      "interplay", 
      "reflection", 
      "structure", 
      "frequency", 
      "experiments", 
      "materials", 
      "parameters", 
      "position", 
      "medium", 
      "speed", 
      "frame", 
      "sense", 
      "effect", 
      "mechanism", 
      "index", 
      "form", 
      "turn", 
      "spite", 
      "reference", 
      "place", 
      "changes", 
      "portion", 
      "units", 
      "context", 
      "development", 
      "travel"
    ], 
    "name": "Recent Developments in the Theory of Optical Gap Solitons", 
    "pagination": "233-248", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020608296"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-03807-9_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-03807-9_13", 
      "https://app.dimensions.ai/details/publication/pub.1020608296"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_375.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-03807-9_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-03807-9_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-03807-9_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-03807-9_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-03807-9_13'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      22 PREDICATES      104 URIs      97 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-03807-9_13 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nf66daeb90f3d4799b3f428ffc8e36497
4 schema:datePublished 1999
5 schema:datePublishedReg 1999-01-01
6 schema:description The coupling of counterpropagating waves in Bragg gratings is a linear resonant mechanism: it leads to frequency bandgaps in the spectral region(s) where the “through” propagation is exponentially damped thereby resulting into a reflective structure. This phenomenon, caused by a resonance between the grating and the light wavevectors, is clearly affected by any nonlinear change of the refractive index, i.e., by the optical Kerr effect at high intensities. Indeed cubic nonlinearities permit the propagation of bright localized (i.e., with exponentially decaying tails) envelopes with carrier frequency inside the linear stopband, known as gap solitons (GSs) [1–5]. This form of energy trapping, mediated by the interplay of nonlinearity and periodicity, is also important with reference to photonic bandgap materials [6–7], and turns out to be ubiquitous, taking place in several physical contexts [8–11]. Roughly speaking, a GS travels as a unit because those photons which tend to escape from the low-intensity tails of the envelope are reflected back towards the high-intensity portion where, in turn, the reflection is locally frustrated. More rigorously, GSs are chirped envelopes which behave according to two independent parameters: their position within the frequency gap and their velocity. Compared to other optical envelope solitons, GSs are slow in the sense that they can travel at any speed below the linear group-velocity of the light in the medium, including the remarkable limit of zero-velocity in the laboratory frame. Quite importantly, recent experiments have demonstrated that slow optical GSs can be successfully excited in fiber gratings in spite of their small nonlinearities [12, 13].
7 schema:editor Nde4ce0e4a7024befb74d1cfb3fe0b86c
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N96e7e10da92b4baabb93436b2a6b5c11
11 schema:keywords Bragg grating
12 Kerr effect
13 bandgap
14 bandgap materials
15 carrier frequency
16 changes
17 context
18 coupling
19 cubic nonlinearity
20 development
21 effect
22 energy trapping
23 envelope
24 envelope solitons
25 experiments
26 fiber grating
27 form
28 frame
29 frequency
30 frequency bandgap
31 frequency gap
32 gap
33 gap solitons
34 grating
35 high intensity
36 high-intensity portion
37 independent parameters
38 index
39 intensity
40 interplay
41 interplay of nonlinearity
42 laboratory frame
43 light
44 light wavevector
45 limit
46 low intensity tail
47 materials
48 mechanism
49 medium
50 nonlinear changes
51 nonlinearity
52 optical Kerr effect
53 optical gap solitons
54 parameters
55 periodicity
56 phenomenon
57 photonic bandgap materials
58 photons
59 physical context
60 place
61 portion
62 position
63 propagation
64 recent developments
65 recent experiments
66 reference
67 reflection
68 reflective structures
69 refractive index
70 remarkable limit
71 resonance
72 resonant mechanism
73 sense
74 small nonlinearity
75 solitons
76 speed
77 spite
78 stopband
79 structure
80 tail
81 theory
82 trapping
83 travel
84 turn
85 units
86 velocity
87 waves
88 wavevector
89 zero-velocity
90 schema:name Recent Developments in the Theory of Optical Gap Solitons
91 schema:pagination 233-248
92 schema:productId N8253c2b7eacc49ef97575ea0f8ca5a9f
93 Nbddf16447c2f447fa02cb1f03ef827be
94 schema:publisher N16326b7307bd468c8e7e5ff5a68fb559
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020608296
96 https://doi.org/10.1007/978-3-662-03807-9_13
97 schema:sdDatePublished 2022-12-01T06:52
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N8dc3b916335e4148a4f2983849d5ec83
100 schema:url https://doi.org/10.1007/978-3-662-03807-9_13
101 sgo:license sg:explorer/license/
102 sgo:sdDataset chapters
103 rdf:type schema:Chapter
104 N16326b7307bd468c8e7e5ff5a68fb559 schema:name Springer Nature
105 rdf:type schema:Organisation
106 N16874f512d7340aba5b743703b5691c5 schema:familyName Zakharov
107 schema:givenName V. E.
108 rdf:type schema:Person
109 N20cfcdabf9274a10b704d9c60b9758f4 rdf:first sg:person.0700111034.04
110 rdf:rest N783a94d6b11f474ba8ffc3bb92641a63
111 N783a94d6b11f474ba8ffc3bb92641a63 rdf:first sg:person.01251003122.13
112 rdf:rest rdf:nil
113 N8253c2b7eacc49ef97575ea0f8ca5a9f schema:name doi
114 schema:value 10.1007/978-3-662-03807-9_13
115 rdf:type schema:PropertyValue
116 N8dc3b916335e4148a4f2983849d5ec83 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N909bf3096bf247f4bbbfabc31b692330 schema:familyName Wabnitz
119 schema:givenName S.
120 rdf:type schema:Person
121 N96e7e10da92b4baabb93436b2a6b5c11 schema:isbn 978-3-540-66314-0
122 978-3-662-03807-9
123 schema:name Optical Solitons: Theoretical Challenges and Industrial Perspectives
124 rdf:type schema:Book
125 Nbddf16447c2f447fa02cb1f03ef827be schema:name dimensions_id
126 schema:value pub.1020608296
127 rdf:type schema:PropertyValue
128 Nd70f7651534a43e1a561522f8a8f6988 rdf:first sg:person.01000607032.12
129 rdf:rest N20cfcdabf9274a10b704d9c60b9758f4
130 Nde4ce0e4a7024befb74d1cfb3fe0b86c rdf:first N16874f512d7340aba5b743703b5691c5
131 rdf:rest Nedd8caa867ed449ca3b9108077143a0d
132 Nedd8caa867ed449ca3b9108077143a0d rdf:first N909bf3096bf247f4bbbfabc31b692330
133 rdf:rest rdf:nil
134 Nf66daeb90f3d4799b3f428ffc8e36497 rdf:first sg:person.01242414260.33
135 rdf:rest Nd70f7651534a43e1a561522f8a8f6988
136 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
137 schema:name Physical Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
140 schema:name Optical Physics
141 rdf:type schema:DefinedTerm
142 sg:person.01000607032.12 schema:affiliation grid-institutes:None
143 schema:familyName Conti
144 schema:givenName C.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000607032.12
146 rdf:type schema:Person
147 sg:person.01242414260.33 schema:affiliation grid-institutes:grid.8484.0
148 schema:familyName Trillo
149 schema:givenName S.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33
151 rdf:type schema:Person
152 sg:person.01251003122.13 schema:affiliation grid-institutes:None
153 schema:familyName Assanto
154 schema:givenName G.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251003122.13
156 rdf:type schema:Person
157 sg:person.0700111034.04 schema:affiliation grid-institutes:None
158 schema:familyName de Rossi
159 schema:givenName A.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700111034.04
161 rdf:type schema:Person
162 grid-institutes:None schema:alternateName National Institute for the Physics of Matter, INFM-RM3 Division, via della Vasca Navale 84, 00146, Roma, Italy
163 schema:name Department of Electronic Engineering, Terza University of Roma, via della Vasca Navale 84, 00146, Roma, Italy
164 National Institute for the Physics of Matter, INFM-RM3 Division, via della Vasca Navale 84, 00146, Roma, Italy
165 rdf:type schema:Organization
166 grid-institutes:grid.8484.0 schema:alternateName Dipartimento di Ingegneria, Universitá di Ferrara, via Saragat 1, 44100, Ferrara, Italy
167 schema:name Dipartimento di Ingegneria, Universitá di Ferrara, via Saragat 1, 44100, Ferrara, Italy
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...