Physically-Based Fusion of Visual Data over Space, Time, and Scale View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

Demetri Terzopoulos

ABSTRACT

This paper surveys an approach to data fusion that makes use of computational physics. Partial, noisy, multisensory data acquired at different spatial positions, at different instants in time, and/or at different scales of resolution are transformed into nonlinear force fields. The force fields act on deformable models, whose physical behaviors are governed by the continuum mechanical equations of deformable bodies. Reacting dynamically to the net external forces, deformable models integrate, interpolate, and regularize all the incoming data into a globally consistent interpretation. Physically-based fusion has seen successful application to several vision problems: image contour extraction, stereo and motion matching, visual surface reconstruction, and the recovery of 3D shape and nonrigid motion from dynamic stereo imagery. More... »

PAGES

63-69

Book

TITLE

Multisensor Fusion for Computer Vision

ISBN

978-3-642-08135-4
978-3-662-02957-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-02957-2_4

DOI

http://dx.doi.org/10.1007/978-3-662-02957-2_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020250309


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Schlumberger LCS, PO Box 200015, 78720, Austin, TX, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Schlumberger Laboratory for Computer Science, University of Toronto, Canada", 
            "Computer Science Dept., University of Toronto, M5S 1A4, Toronto, Ontario, Canada", 
            "Schlumberger LCS, PO Box 200015, 78720, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "This paper surveys an approach to data fusion that makes use of computational physics. Partial, noisy, multisensory data acquired at different spatial positions, at different instants in time, and/or at different scales of resolution are transformed into nonlinear force fields. The force fields act on deformable models, whose physical behaviors are governed by the continuum mechanical equations of deformable bodies. Reacting dynamically to the net external forces, deformable models integrate, interpolate, and regularize all the incoming data into a globally consistent interpretation. Physically-based fusion has seen successful application to several vision problems: image contour extraction, stereo and motion matching, visual surface reconstruction, and the recovery of 3D shape and nonrigid motion from dynamic stereo imagery.", 
    "editor": [
      {
        "familyName": "Aggarwal", 
        "givenName": "J. K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-02957-2_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-08135-4", 
        "978-3-662-02957-2"
      ], 
      "name": "Multisensor Fusion for Computer Vision", 
      "type": "Book"
    }, 
    "keywords": [
      "deformable model", 
      "image contour extraction", 
      "visual surface reconstruction", 
      "data fusion", 
      "incoming data", 
      "multisensory data", 
      "vision problems", 
      "visual data", 
      "motion matching", 
      "contour extraction", 
      "net external forces", 
      "nonrigid motion", 
      "stereo imagery", 
      "computational physics", 
      "deformable bodies", 
      "mechanical equations", 
      "physical behavior", 
      "external forces", 
      "surface reconstruction", 
      "different instants", 
      "successful application", 
      "different scales", 
      "different spatial positions", 
      "stereo", 
      "spatial position", 
      "fusion", 
      "force", 
      "matching", 
      "nonlinear force field", 
      "imagery", 
      "data", 
      "applications", 
      "instant", 
      "model", 
      "motion", 
      "extraction", 
      "space", 
      "equations", 
      "shape", 
      "field", 
      "behavior", 
      "reconstruction", 
      "time", 
      "scale", 
      "resolution", 
      "force field", 
      "physics", 
      "recovery", 
      "use", 
      "problem", 
      "consistent interpretation", 
      "approach", 
      "position", 
      "body", 
      "interpretation", 
      "paper", 
      "continuum mechanical equations", 
      "dynamic stereo imagery"
    ], 
    "name": "Physically-Based Fusion of Visual Data over Space, Time, and Scale", 
    "pagination": "63-69", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020250309"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-02957-2_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-02957-2_4", 
      "https://app.dimensions.ai/details/publication/pub.1020250309"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_449.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-02957-2_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-02957-2_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-02957-2_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-02957-2_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-02957-2_4'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      23 PREDICATES      84 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-02957-2_4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6ead8378188541d2bd24f2fce160e928
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description This paper surveys an approach to data fusion that makes use of computational physics. Partial, noisy, multisensory data acquired at different spatial positions, at different instants in time, and/or at different scales of resolution are transformed into nonlinear force fields. The force fields act on deformable models, whose physical behaviors are governed by the continuum mechanical equations of deformable bodies. Reacting dynamically to the net external forces, deformable models integrate, interpolate, and regularize all the incoming data into a globally consistent interpretation. Physically-based fusion has seen successful application to several vision problems: image contour extraction, stereo and motion matching, visual surface reconstruction, and the recovery of 3D shape and nonrigid motion from dynamic stereo imagery.
7 schema:editor Nc5db436318d846a790793558cf97c2e4
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne98e558f47604192b5f03b58d91c609e
12 schema:keywords applications
13 approach
14 behavior
15 body
16 computational physics
17 consistent interpretation
18 continuum mechanical equations
19 contour extraction
20 data
21 data fusion
22 deformable bodies
23 deformable model
24 different instants
25 different scales
26 different spatial positions
27 dynamic stereo imagery
28 equations
29 external forces
30 extraction
31 field
32 force
33 force field
34 fusion
35 image contour extraction
36 imagery
37 incoming data
38 instant
39 interpretation
40 matching
41 mechanical equations
42 model
43 motion
44 motion matching
45 multisensory data
46 net external forces
47 nonlinear force field
48 nonrigid motion
49 paper
50 physical behavior
51 physics
52 position
53 problem
54 reconstruction
55 recovery
56 resolution
57 scale
58 shape
59 space
60 spatial position
61 stereo
62 stereo imagery
63 successful application
64 surface reconstruction
65 time
66 use
67 vision problems
68 visual data
69 visual surface reconstruction
70 schema:name Physically-Based Fusion of Visual Data over Space, Time, and Scale
71 schema:pagination 63-69
72 schema:productId N30567e379bf7478ab8756275046c062c
73 Ndc0fd30dfc0845f2b3b1ba87498d2591
74 schema:publisher N419032574cb54f959508c4f07f75e5b6
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020250309
76 https://doi.org/10.1007/978-3-662-02957-2_4
77 schema:sdDatePublished 2022-01-01T19:25
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N318397715c7e4212a87448e3c9f1f4a7
80 schema:url https://doi.org/10.1007/978-3-662-02957-2_4
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N26a42dd7d5f14f90956f6c3e36170af4 schema:familyName Aggarwal
85 schema:givenName J. K.
86 rdf:type schema:Person
87 N30567e379bf7478ab8756275046c062c schema:name dimensions_id
88 schema:value pub.1020250309
89 rdf:type schema:PropertyValue
90 N318397715c7e4212a87448e3c9f1f4a7 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N419032574cb54f959508c4f07f75e5b6 schema:name Springer Nature
93 rdf:type schema:Organisation
94 N6ead8378188541d2bd24f2fce160e928 rdf:first sg:person.016347323445.35
95 rdf:rest rdf:nil
96 Nc5db436318d846a790793558cf97c2e4 rdf:first N26a42dd7d5f14f90956f6c3e36170af4
97 rdf:rest rdf:nil
98 Ndc0fd30dfc0845f2b3b1ba87498d2591 schema:name doi
99 schema:value 10.1007/978-3-662-02957-2_4
100 rdf:type schema:PropertyValue
101 Ne98e558f47604192b5f03b58d91c609e schema:isbn 978-3-642-08135-4
102 978-3-662-02957-2
103 schema:name Multisensor Fusion for Computer Vision
104 rdf:type schema:Book
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
109 schema:name Artificial Intelligence and Image Processing
110 rdf:type schema:DefinedTerm
111 sg:person.016347323445.35 schema:affiliation grid-institutes:None
112 schema:familyName Terzopoulos
113 schema:givenName Demetri
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
115 rdf:type schema:Person
116 grid-institutes:None schema:alternateName Schlumberger LCS, PO Box 200015, 78720, Austin, TX, USA
117 schema:name Computer Science Dept., University of Toronto, M5S 1A4, Toronto, Ontario, Canada
118 Schlumberger LCS, PO Box 200015, 78720, Austin, TX, USA
119 Schlumberger Laboratory for Computer Science, University of Toronto, Canada
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...