Information Integration and Model Selection in Computer Vision View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

Jan-Olof Eklundh

ABSTRACT

An information processing system using sensor data to derive properties of the external world typically uses precise mathematical and physical models to do so. A crucial point then is to select the appropriate model or sensor to base the computations on. In realistic cases it is generally difficult or infeasible to control the environment. On the other hand, different situations as well as different sensors assume different models. Hence, one is in general faced with a difficult model estimation problem, especially in the presence of noise and conflicting observations. More... »

PAGES

3-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-02957-2_1

DOI

http://dx.doi.org/10.1007/978-3-662-02957-2_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019478756


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Vision and Active Perception Laboratory, Royal Institute of Technology, S-100 44, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Computational Vision and Active Perception Laboratory, Royal Institute of Technology, S-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eklundh", 
        "givenName": "Jan-Olof", 
        "id": "sg:person.014400652155.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "An information processing system using sensor data to derive properties of the external world typically uses precise mathematical and physical models to do so. A crucial point then is to select the appropriate model or sensor to base the computations on. In realistic cases it is generally difficult or infeasible to control the environment. On the other hand, different situations as well as different sensors assume different models. Hence, one is in general faced with a difficult model estimation problem, especially in the presence of noise and conflicting observations.", 
    "editor": [
      {
        "familyName": "Aggarwal", 
        "givenName": "J. K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-02957-2_1", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-08135-4", 
        "978-3-662-02957-2"
      ], 
      "name": "Multisensor Fusion for Computer Vision", 
      "type": "Book"
    }, 
    "keywords": [
      "model estimation problem", 
      "estimation problem", 
      "presence of noise", 
      "model selection", 
      "information processing systems", 
      "computer vision", 
      "sensor data", 
      "information integration", 
      "physical model", 
      "processing system", 
      "different sensors", 
      "realistic case", 
      "different models", 
      "appropriate model", 
      "different situations", 
      "crucial point", 
      "model", 
      "computation", 
      "sensors", 
      "external world", 
      "noise", 
      "vision", 
      "problem", 
      "integration", 
      "environment", 
      "properties", 
      "point", 
      "system", 
      "selection", 
      "situation", 
      "data", 
      "world", 
      "cases", 
      "observations", 
      "hand", 
      "presence"
    ], 
    "name": "Information Integration and Model Selection in Computer Vision", 
    "pagination": "3-13", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019478756"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-02957-2_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-02957-2_1", 
      "https://app.dimensions.ai/details/publication/pub.1019478756"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_333.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-02957-2_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-02957-2_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-02957-2_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-02957-2_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-02957-2_1'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      22 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-02957-2_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N12f9fc5fd6ab428984c32da43e2be96e
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description An information processing system using sensor data to derive properties of the external world typically uses precise mathematical and physical models to do so. A crucial point then is to select the appropriate model or sensor to base the computations on. In realistic cases it is generally difficult or infeasible to control the environment. On the other hand, different situations as well as different sensors assume different models. Hence, one is in general faced with a difficult model estimation problem, especially in the presence of noise and conflicting observations.
7 schema:editor N41b22f3bb0eb4de4afab4825a9b64a4e
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N2f81865792d64a9c986c3a3d56d61f83
11 schema:keywords appropriate model
12 cases
13 computation
14 computer vision
15 crucial point
16 data
17 different models
18 different sensors
19 different situations
20 environment
21 estimation problem
22 external world
23 hand
24 information integration
25 information processing systems
26 integration
27 model
28 model estimation problem
29 model selection
30 noise
31 observations
32 physical model
33 point
34 presence
35 presence of noise
36 problem
37 processing system
38 properties
39 realistic case
40 selection
41 sensor data
42 sensors
43 situation
44 system
45 vision
46 world
47 schema:name Information Integration and Model Selection in Computer Vision
48 schema:pagination 3-13
49 schema:productId N343ed2d097f144019b09d6311b19b70a
50 Nc1a3734c580c43439a18292a7627812a
51 schema:publisher N96adb00e3949429190d8caca674d4854
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019478756
53 https://doi.org/10.1007/978-3-662-02957-2_1
54 schema:sdDatePublished 2022-12-01T06:51
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Naa8db935763c4c49af8b2f749300a774
57 schema:url https://doi.org/10.1007/978-3-662-02957-2_1
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N12f9fc5fd6ab428984c32da43e2be96e rdf:first sg:person.014400652155.17
62 rdf:rest rdf:nil
63 N2f81865792d64a9c986c3a3d56d61f83 schema:isbn 978-3-642-08135-4
64 978-3-662-02957-2
65 schema:name Multisensor Fusion for Computer Vision
66 rdf:type schema:Book
67 N343ed2d097f144019b09d6311b19b70a schema:name dimensions_id
68 schema:value pub.1019478756
69 rdf:type schema:PropertyValue
70 N41b22f3bb0eb4de4afab4825a9b64a4e rdf:first Nfb6015c4482642f18847fcbc284e933f
71 rdf:rest rdf:nil
72 N96adb00e3949429190d8caca674d4854 schema:name Springer Nature
73 rdf:type schema:Organisation
74 Naa8db935763c4c49af8b2f749300a774 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nc1a3734c580c43439a18292a7627812a schema:name doi
77 schema:value 10.1007/978-3-662-02957-2_1
78 rdf:type schema:PropertyValue
79 Nfb6015c4482642f18847fcbc284e933f schema:familyName Aggarwal
80 schema:givenName J. K.
81 rdf:type schema:Person
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:person.014400652155.17 schema:affiliation grid-institutes:grid.5037.1
89 schema:familyName Eklundh
90 schema:givenName Jan-Olof
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17
92 rdf:type schema:Person
93 grid-institutes:grid.5037.1 schema:alternateName Computational Vision and Active Perception Laboratory, Royal Institute of Technology, S-100 44, Stockholm, Sweden
94 schema:name Computational Vision and Active Perception Laboratory, Royal Institute of Technology, S-100 44, Stockholm, Sweden
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...