The Deepest Fit View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

Peter J. Rousseeuw , Stefan Van Aelst

ABSTRACT

Recently, Rousseeuw & Hubert (1996) defined the depth of a regression fit relative to the data. This concept of regression depth immediately leads to a new robust regression estimator which we call the deepest fit. Quite simply, it is the fit with largest depth. Therefore, it can be seen as a generalization of the univariate median. We construct an algorithm to compute the deepest fit in simple regression, and illustrate it with examples. For any bivariate data set Z n the deepest fit has depth at least n/3, and a breakdown value of at least 1/3. Around the deepest fit we construct depth envelopes which generalize the quantiles around the univariate median. More... »

PAGES

437-442

Book

TITLE

COMPSTAT

ISBN

978-3-7908-1131-5
978-3-662-01131-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-01131-7_61

DOI

http://dx.doi.org/10.1007/978-3-662-01131-7_61

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051767054


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, Universitaire Instelling Antwerpen (UIA), Universiteitsplein 1, B-2610\u00a0Wilrijk, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousseeuw", 
        "givenName": "Peter J.", 
        "id": "sg:person.0775337371.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Department of Mathematics and Computer Science, Universitaire Instelling Antwerpen (UIA), Universiteitsplein 1, B-2610\u00a0Wilrijk, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Aelst", 
        "givenName": "Stefan", 
        "id": "sg:person.012217314753.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217314753.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jmva.1998.1751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044736952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1978.10480065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301984"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "Recently, Rousseeuw & Hubert (1996) defined the depth of a regression fit relative to the data. This concept of regression depth immediately leads to a new robust regression estimator which we call the deepest fit. Quite simply, it is the fit with largest depth. Therefore, it can be seen as a generalization of the univariate median. We construct an algorithm to compute the deepest fit in simple regression, and illustrate it with examples. For any bivariate data set Z n the deepest fit has depth at least n/3, and a breakdown value of at least 1/3. Around the deepest fit we construct depth envelopes which generalize the quantiles around the univariate median.", 
    "editor": [
      {
        "familyName": "Payne", 
        "givenName": "Roger", 
        "type": "Person"
      }, 
      {
        "familyName": "Green", 
        "givenName": "Peter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-01131-7_61", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7908-1131-5", 
        "978-3-662-01131-7"
      ], 
      "name": "COMPSTAT", 
      "type": "Book"
    }, 
    "name": "The Deepest Fit", 
    "pagination": "437-442", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-01131-7_61"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f696ef08bf16117e9298e155443b5524d7adc8f46f2c73e54c6693552ce7ae7f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051767054"
        ]
      }
    ], 
    "publisher": {
      "location": "Heidelberg", 
      "name": "Physica-Verlag HD", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-01131-7_61", 
      "https://app.dimensions.ai/details/publication/pub.1051767054"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-01131-7_61"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-01131-7_61'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-01131-7_61'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-01131-7_61'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-01131-7_61'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-01131-7_61 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0b1b56b281e84fbeab579bd3a72200f6
4 schema:citation https://doi.org/10.1006/jmva.1998.1751
5 https://doi.org/10.1080/01621459.1978.10480065
6 schema:datePublished 1998
7 schema:datePublishedReg 1998-01-01
8 schema:description Recently, Rousseeuw & Hubert (1996) defined the depth of a regression fit relative to the data. This concept of regression depth immediately leads to a new robust regression estimator which we call the deepest fit. Quite simply, it is the fit with largest depth. Therefore, it can be seen as a generalization of the univariate median. We construct an algorithm to compute the deepest fit in simple regression, and illustrate it with examples. For any bivariate data set Z n the deepest fit has depth at least n/3, and a breakdown value of at least 1/3. Around the deepest fit we construct depth envelopes which generalize the quantiles around the univariate median.
9 schema:editor Nb3b51e514a324dab9bda27ffb7a4affc
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N7072b27424cf464c80cf718d5198de00
14 schema:name The Deepest Fit
15 schema:pagination 437-442
16 schema:productId N75828bc1c6874e829851feba35529162
17 N7d69b55327ce46e7a6cd411f5009dda4
18 Nb1a683ef68a8415393314a4f232dd4e5
19 schema:publisher N1d8ad83b8075472894cc26e1bc519730
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051767054
21 https://doi.org/10.1007/978-3-662-01131-7_61
22 schema:sdDatePublished 2019-04-16T00:52
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N48f7af9e127047a0aa640795cc72a795
25 schema:url http://link.springer.com/10.1007/978-3-662-01131-7_61
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N0b1b56b281e84fbeab579bd3a72200f6 rdf:first sg:person.0775337371.63
30 rdf:rest N2a6670e0ba964ea7ac55c655ce1fa0ff
31 N1d8ad83b8075472894cc26e1bc519730 schema:location Heidelberg
32 schema:name Physica-Verlag HD
33 rdf:type schema:Organisation
34 N2a6670e0ba964ea7ac55c655ce1fa0ff rdf:first sg:person.012217314753.64
35 rdf:rest rdf:nil
36 N48f7af9e127047a0aa640795cc72a795 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N54f7cd86d4394682ac8d9acdd97a53ef schema:familyName Payne
39 schema:givenName Roger
40 rdf:type schema:Person
41 N7072b27424cf464c80cf718d5198de00 schema:isbn 978-3-662-01131-7
42 978-3-7908-1131-5
43 schema:name COMPSTAT
44 rdf:type schema:Book
45 N75828bc1c6874e829851feba35529162 schema:name doi
46 schema:value 10.1007/978-3-662-01131-7_61
47 rdf:type schema:PropertyValue
48 N77978bbb90a749c5b770f2d0ef54d583 schema:familyName Green
49 schema:givenName Peter
50 rdf:type schema:Person
51 N7d69b55327ce46e7a6cd411f5009dda4 schema:name dimensions_id
52 schema:value pub.1051767054
53 rdf:type schema:PropertyValue
54 Nb1a683ef68a8415393314a4f232dd4e5 schema:name readcube_id
55 schema:value f696ef08bf16117e9298e155443b5524d7adc8f46f2c73e54c6693552ce7ae7f
56 rdf:type schema:PropertyValue
57 Nb3b51e514a324dab9bda27ffb7a4affc rdf:first N54f7cd86d4394682ac8d9acdd97a53ef
58 rdf:rest Nc2d385748da94890b744bee021b43e18
59 Nc2d385748da94890b744bee021b43e18 rdf:first N77978bbb90a749c5b770f2d0ef54d583
60 rdf:rest rdf:nil
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 sg:person.012217314753.64 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
68 schema:familyName Van Aelst
69 schema:givenName Stefan
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217314753.64
71 rdf:type schema:Person
72 sg:person.0775337371.63 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
73 schema:familyName Rousseeuw
74 schema:givenName Peter J.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775337371.63
76 rdf:type schema:Person
77 https://doi.org/10.1006/jmva.1998.1751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044736952
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1080/01621459.1978.10480065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301984
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
82 schema:name Department of Mathematics and Computer Science, Universitaire Instelling Antwerpen (UIA), Universiteitsplein 1, B-2610 Wilrijk, Belgium
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...