Future HD vehicle requirements due to legislation and effects on CO2 and air quality View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Stefan Hausberger , Martin Rexeis , Antonius Kies , Konstantin Weller , Gérard Silberholz

ABSTRACT

The actual EURO VI regulation based on WHTC, WHSC and on on-board emission tests led to very low emission levels of HDV also in real driving conditions. Consequently the focus of the development will shift more and more towards low CO2 emissions and better fuel efficiency. As important basis for further steps and for neutral information of customers on the fuel efficiency of different trucks, a certification method for CO2 and fuel consumption of trucks is being developed. The method is based on component testing and vehicle simulation using the component test data as model input. Due to the NOx – fuel efficiency trade off a proper monitoring of NOx emissions in the engine test procedure seems to be important to maintain the excellent NOx emission behaviour of HDV in real world driving. The NOx monitoring certainly shall not add unnecessary burden to the engine manufacturers. The best compromise between effort and robustness is still under discussion. The ISC emission test procedure with PEMS equipment covers most of the relevant load points in the actual version. If the threshold for the average engine power of the MAWs in the test is reduced to 10% of the rated engine power, all relevant load points would be covered. Nevertheless relevant shortcomings of monitoring the steady state fuel map by NOx measurement in ISC exist. NOx measurements in real driving conditions would not detect if fuel efficiency optimisations at the expense of increasing NOx are applied to the engine only at the steady state conditions which occur during the engine fuel map measurements and in general (illegal) test engine specific optimisations can also not be monitored by ISC since different physical engines are used. More... »

PAGES

561-575

Book

TITLE

Internationaler Motorenkongress 2016

ISBN

978-3-658-12917-0
978-3-658-12918-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-658-12918-7_43

DOI

http://dx.doi.org/10.1007/978-3-658-12918-7_43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025717946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "TU Graz"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hausberger", 
        "givenName": "Stefan", 
        "id": "sg:person.015504471113.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015504471113.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "TU Graz"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rexeis", 
        "givenName": "Martin", 
        "id": "sg:person.013510074431.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013510074431.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "TU Graz"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kies", 
        "givenName": "Antonius", 
        "id": "sg:person.016427663231.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016427663231.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "TU Graz"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weller", 
        "givenName": "Konstantin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "TU Graz"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silberholz", 
        "givenName": "G\u00e9rard", 
        "id": "sg:person.011755024141.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755024141.67"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "The actual EURO VI regulation based on WHTC, WHSC and on on-board emission tests led to very low emission levels of HDV also in real driving conditions. Consequently the focus of the development will shift more and more towards low CO2 emissions and better fuel efficiency. As important basis for further steps and for neutral information of customers on the fuel efficiency of different trucks, a certification method for CO2 and fuel consumption of trucks is being developed. The method is based on component testing and vehicle simulation using the component test data as model input. Due to the NOx \u2013 fuel efficiency trade off a proper monitoring of NOx emissions in the engine test procedure seems to be important to maintain the excellent NOx emission behaviour of HDV in real world driving. The NOx monitoring certainly shall not add unnecessary burden to the engine manufacturers. The best compromise between effort and robustness is still under discussion. The ISC emission test procedure with PEMS equipment covers most of the relevant load points in the actual version. If the threshold for the average engine power of the MAWs in the test is reduced to 10% of the rated engine power, all relevant load points would be covered. Nevertheless relevant shortcomings of monitoring the steady state fuel map by NOx measurement in ISC exist. NOx measurements in real driving conditions would not detect if fuel efficiency optimisations at the expense of increasing NOx are applied to the engine only at the steady state conditions which occur during the engine fuel map measurements and in general (illegal) test engine specific optimisations can also not be monitored by ISC since different physical engines are used.", 
    "editor": [
      {
        "familyName": "Liebl", 
        "givenName": "Johannes", 
        "type": "Person"
      }, 
      {
        "familyName": "Beidl", 
        "givenName": "Christian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-658-12918-7_43", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-658-12917-0", 
        "978-3-658-12918-7"
      ], 
      "name": "Internationaler Motorenkongress 2016", 
      "type": "Book"
    }, 
    "name": "Future HD vehicle requirements due to legislation and effects on CO2 and air quality", 
    "pagination": "561-575", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-658-12918-7_43"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7a85ae47e73393c64651ac2916cce0b370ed77fc9d8736e3041e88d02a8adcc3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025717946"
        ]
      }
    ], 
    "publisher": {
      "location": "Wiesbaden", 
      "name": "Springer Fachmedien Wiesbaden", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-658-12918-7_43", 
      "https://app.dimensions.ai/details/publication/pub.1025717946"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000044.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-658-12918-7_43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-658-12918-7_43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-658-12918-7_43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-658-12918-7_43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-658-12918-7_43'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-658-12918-7_43 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nc7e557e97cce4618905b2f29d088656f
4 schema:datePublished 2016
5 schema:datePublishedReg 2016-01-01
6 schema:description The actual EURO VI regulation based on WHTC, WHSC and on on-board emission tests led to very low emission levels of HDV also in real driving conditions. Consequently the focus of the development will shift more and more towards low CO2 emissions and better fuel efficiency. As important basis for further steps and for neutral information of customers on the fuel efficiency of different trucks, a certification method for CO2 and fuel consumption of trucks is being developed. The method is based on component testing and vehicle simulation using the component test data as model input. Due to the NOx – fuel efficiency trade off a proper monitoring of NOx emissions in the engine test procedure seems to be important to maintain the excellent NOx emission behaviour of HDV in real world driving. The NOx monitoring certainly shall not add unnecessary burden to the engine manufacturers. The best compromise between effort and robustness is still under discussion. The ISC emission test procedure with PEMS equipment covers most of the relevant load points in the actual version. If the threshold for the average engine power of the MAWs in the test is reduced to 10% of the rated engine power, all relevant load points would be covered. Nevertheless relevant shortcomings of monitoring the steady state fuel map by NOx measurement in ISC exist. NOx measurements in real driving conditions would not detect if fuel efficiency optimisations at the expense of increasing NOx are applied to the engine only at the steady state conditions which occur during the engine fuel map measurements and in general (illegal) test engine specific optimisations can also not be monitored by ISC since different physical engines are used.
7 schema:editor Nd375c2efb207498e89dffdc3bc30006a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N637d1f521080440fb9bbee7184f6cdfb
12 schema:name Future HD vehicle requirements due to legislation and effects on CO2 and air quality
13 schema:pagination 561-575
14 schema:productId N4443a16f149d4a629689615811be6888
15 Nc4b56ae653134f5c9a1a54241b6e1a9b
16 Ncb47b3ea10254a9ba8752d40f7e8ec95
17 schema:publisher Nfbc99d2ce626458996c16f45b9217e94
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025717946
19 https://doi.org/10.1007/978-3-658-12918-7_43
20 schema:sdDatePublished 2019-04-15T20:49
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N6da6df991ea74f08b91d0f301b7deeb8
23 schema:url http://link.springer.com/10.1007/978-3-658-12918-7_43
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0f7e5aa7c1d54f39b8506c4d7f99b954 schema:familyName Liebl
28 schema:givenName Johannes
29 rdf:type schema:Person
30 N1c3fb110f39d4ad9bd9606f8a58ed3d8 rdf:first Na72a9bc073ff4d41a3c83186ea00a018
31 rdf:rest rdf:nil
32 N34ab55cd069a480b924673a42c19b007 rdf:first N8e8bac083b5e4bb8be482a55043bdbd7
33 rdf:rest Nb4efd1c7abab40ca87b2e339b1e5f00e
34 N372e0555144a4d848466df02ec6d06b6 schema:name TU Graz
35 rdf:type schema:Organization
36 N4443a16f149d4a629689615811be6888 schema:name doi
37 schema:value 10.1007/978-3-658-12918-7_43
38 rdf:type schema:PropertyValue
39 N5cdcfabdffa542b8a2de26f348cb6595 schema:name TU Graz
40 rdf:type schema:Organization
41 N637d1f521080440fb9bbee7184f6cdfb schema:isbn 978-3-658-12917-0
42 978-3-658-12918-7
43 schema:name Internationaler Motorenkongress 2016
44 rdf:type schema:Book
45 N6da6df991ea74f08b91d0f301b7deeb8 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N81645c165fce4bebb2a8dcb107d484fa schema:name TU Graz
48 rdf:type schema:Organization
49 N834772e7af4348cfb7580ad6261249b0 schema:name TU Graz
50 rdf:type schema:Organization
51 N8e8bac083b5e4bb8be482a55043bdbd7 schema:affiliation N372e0555144a4d848466df02ec6d06b6
52 schema:familyName Weller
53 schema:givenName Konstantin
54 rdf:type schema:Person
55 N946288274c89424c8dd4afa0eab2d7bc rdf:first sg:person.016427663231.76
56 rdf:rest N34ab55cd069a480b924673a42c19b007
57 N96e2e88a846541448d7f174784d32fa4 schema:name TU Graz
58 rdf:type schema:Organization
59 Na72a9bc073ff4d41a3c83186ea00a018 schema:familyName Beidl
60 schema:givenName Christian
61 rdf:type schema:Person
62 Nb4efd1c7abab40ca87b2e339b1e5f00e rdf:first sg:person.011755024141.67
63 rdf:rest rdf:nil
64 Nc4b56ae653134f5c9a1a54241b6e1a9b schema:name readcube_id
65 schema:value 7a85ae47e73393c64651ac2916cce0b370ed77fc9d8736e3041e88d02a8adcc3
66 rdf:type schema:PropertyValue
67 Nc7e557e97cce4618905b2f29d088656f rdf:first sg:person.015504471113.31
68 rdf:rest Nceb6f3bb936d440bb868eb7c0e55f0dc
69 Ncb47b3ea10254a9ba8752d40f7e8ec95 schema:name dimensions_id
70 schema:value pub.1025717946
71 rdf:type schema:PropertyValue
72 Nceb6f3bb936d440bb868eb7c0e55f0dc rdf:first sg:person.013510074431.09
73 rdf:rest N946288274c89424c8dd4afa0eab2d7bc
74 Nd375c2efb207498e89dffdc3bc30006a rdf:first N0f7e5aa7c1d54f39b8506c4d7f99b954
75 rdf:rest N1c3fb110f39d4ad9bd9606f8a58ed3d8
76 Nfbc99d2ce626458996c16f45b9217e94 schema:location Wiesbaden
77 schema:name Springer Fachmedien Wiesbaden
78 rdf:type schema:Organisation
79 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
80 schema:name Chemical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Chemistry (incl. Structural)
84 rdf:type schema:DefinedTerm
85 sg:person.011755024141.67 schema:affiliation N81645c165fce4bebb2a8dcb107d484fa
86 schema:familyName Silberholz
87 schema:givenName Gérard
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755024141.67
89 rdf:type schema:Person
90 sg:person.013510074431.09 schema:affiliation N834772e7af4348cfb7580ad6261249b0
91 schema:familyName Rexeis
92 schema:givenName Martin
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013510074431.09
94 rdf:type schema:Person
95 sg:person.015504471113.31 schema:affiliation N96e2e88a846541448d7f174784d32fa4
96 schema:familyName Hausberger
97 schema:givenName Stefan
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015504471113.31
99 rdf:type schema:Person
100 sg:person.016427663231.76 schema:affiliation N5cdcfabdffa542b8a2de26f348cb6595
101 schema:familyName Kies
102 schema:givenName Antonius
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016427663231.76
104 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...