Predicting the Lineage Choice of Hematopoietic Stem Cells, A Novel Approach Using Deep Neural Networks View Full Text


Ontology type: schema:Book     


Book Info

DATE

2016

GENRE

Monograph

AUTHORS

Manuel Kroiss

PUBLISHER

Springer Fachmedien Wiesbaden

ABSTRACT

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-658-12879-1

DOI

http://dx.doi.org/10.1007/978-3-658-12879-1

ISBN

978-3-658-12878-4 | 978-3-658-12879-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019843604


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "name": [
            "Neuherberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kroiss", 
        "givenName": "Manuel", 
        "type": "Person"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "genre": "monograph", 
    "id": "sg:pub.10.1007/978-3-658-12879-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isbn": [
      "978-3-658-12878-4", 
      "978-3-658-12879-1"
    ], 
    "name": "Predicting the Lineage Choice of Hematopoietic Stem Cells, A Novel Approach Using Deep Neural Networks", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e8bb7ae5d7d341c78b35077abb04374ad5bba18ff19e7d997b0e89b9e6541a5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-658-12879-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019843604"
        ]
      }
    ], 
    "publisher": {
      "location": "Wiesbaden", 
      "name": "Springer Fachmedien Wiesbaden", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-658-12879-1", 
      "https://app.dimensions.ai/details/publication/pub.1019843604"
    ], 
    "sdDataset": "books", 
    "sdDatePublished": "2019-04-12T04:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117123_00000001.jsonl", 
    "type": "Book", 
    "url": "https://link.springer.com/10.1007%2F978-3-658-12879-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-658-12879-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-658-12879-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-658-12879-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-658-12879-1'


 

This table displays all metadata directly associated to this object as RDF triples.

44 TRIPLES      18 PREDICATES      23 URIs      18 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-658-12879-1 schema:author N3429fe16a1b8435489f87894099b2b1e
2 schema:datePublished 2016
3 schema:datePublishedReg 2016-01-01
4 schema:genre monograph
5 schema:inLanguage en
6 schema:isAccessibleForFree false
7 schema:isbn 978-3-658-12878-4
8 978-3-658-12879-1
9 schema:name Predicting the Lineage Choice of Hematopoietic Stem Cells, A Novel Approach Using Deep Neural Networks
10 schema:productId N08ee7b2261324846b01a668907bf689b
11 N30e747fb5db443cc9e86b6338045a857
12 N8cd9f5afcabb4c16bd0244ad325bdd90
13 schema:publisher Nf2226c6db4ef4b499ee68c41f2d41c24
14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019843604
15 https://doi.org/10.1007/978-3-658-12879-1
16 schema:sdDatePublished 2019-04-12T04:05
17 schema:sdLicense https://scigraph.springernature.com/explorer/license/
18 schema:sdPublisher Ndabe88960086436ea271270b7251ec9c
19 schema:url https://link.springer.com/10.1007%2F978-3-658-12879-1
20 sgo:license sg:explorer/license/
21 sgo:sdDataset books
22 rdf:type schema:Book
23 N08ee7b2261324846b01a668907bf689b schema:name doi
24 schema:value 10.1007/978-3-658-12879-1
25 rdf:type schema:PropertyValue
26 N13cb4b626ff94faab6238b51d7666e9e schema:name Neuherberg, Germany
27 rdf:type schema:Organization
28 N30e747fb5db443cc9e86b6338045a857 schema:name readcube_id
29 schema:value 5e8bb7ae5d7d341c78b35077abb04374ad5bba18ff19e7d997b0e89b9e6541a5
30 rdf:type schema:PropertyValue
31 N3429fe16a1b8435489f87894099b2b1e rdf:first Nc47dbf87e65243b8ab0a922f2c73cb85
32 rdf:rest rdf:nil
33 N8cd9f5afcabb4c16bd0244ad325bdd90 schema:name dimensions_id
34 schema:value pub.1019843604
35 rdf:type schema:PropertyValue
36 Nc47dbf87e65243b8ab0a922f2c73cb85 schema:affiliation N13cb4b626ff94faab6238b51d7666e9e
37 schema:familyName Kroiss
38 schema:givenName Manuel
39 rdf:type schema:Person
40 Ndabe88960086436ea271270b7251ec9c schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nf2226c6db4ef4b499ee68c41f2d41c24 schema:location Wiesbaden
43 schema:name Springer Fachmedien Wiesbaden
44 rdf:type schema:Organisation
 




Preview window. Press ESC to close (or click here)


...