The Role of Tip Atomic and Electronic Structure in Scanning Tunneling Microscopy and Spectroscopy View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

M. Tsukada , K. Kobayashi , N. Isshiki , S. Watanabe , H. Kageshima , T. Schimizu

ABSTRACT

Based on the first-principles Local Density Functional (LDA) calculation of the electronic states both for the tip and the sample surface, theoretical simulation of scanning tunneling microscopy and spectroscopy has been performed for various surface systems. For the tip, cluster models made of 10–20 atoms are utilized and for the sample surface slab models with several atomic layers are adopted. It is found that most of the tunnel current is concentrated on a single apex atom, if the other atoms on the top of the tip are not located on the same level. In such a case the STM image is normal with an atomic resolution. However, if the apex of the tip is formed by more than one atom, abnormal images tend to be formed. We can verify this feature by the numerical results for graphite, Si(100), and Si(111)/Ag surfaces. Due to the interplay between the tip and surface electronic states, some exotic behavior of electron tunneling can be observed in STM/STS. As examples we discuss the negative tunneling conductance observed in a nano-scale region, and the light emission from STM. These phenomena are explained based on realistic calculations of electronic states of the tip/sample system. More... »

PAGES

77-103

Book

TITLE

Scanning Tunneling Microscopy III

ISBN

978-3-642-97472-4
978-3-642-97470-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-97470-0_5

DOI

http://dx.doi.org/10.1007/978-3-642-97470-0_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030649822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Tsukada", 
        "givenName": "M.", 
        "id": "sg:person.016242434421.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kobayashi", 
        "givenName": "K.", 
        "id": "sg:person.014274552061.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274552061.17"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Isshiki", 
        "givenName": "N.", 
        "id": "sg:person.011420022017.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420022017.34"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Watanabe", 
        "givenName": "S.", 
        "id": "sg:person.012557533631.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557533631.27"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kageshima", 
        "givenName": "H.", 
        "id": "sg:person.012402730461.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402730461.05"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Schimizu", 
        "givenName": "T.", 
        "id": "sg:person.07612474320.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07612474320.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "Based on the first-principles Local Density Functional (LDA) calculation of the electronic states both for the tip and the sample surface, theoretical simulation of scanning tunneling microscopy and spectroscopy has been performed for various surface systems. For the tip, cluster models made of 10\u201320 atoms are utilized and for the sample surface slab models with several atomic layers are adopted. It is found that most of the tunnel current is concentrated on a single apex atom, if the other atoms on the top of the tip are not located on the same level. In such a case the STM image is normal with an atomic resolution. However, if the apex of the tip is formed by more than one atom, abnormal images tend to be formed. We can verify this feature by the numerical results for graphite, Si(100), and Si(111)/Ag surfaces. Due to the interplay between the tip and surface electronic states, some exotic behavior of electron tunneling can be observed in STM/STS. As examples we discuss the negative tunneling conductance observed in a nano-scale region, and the light emission from STM. These phenomena are explained based on realistic calculations of electronic states of the tip/sample system.", 
    "editor": [
      {
        "familyName": "Wiesendanger", 
        "givenName": "Roland", 
        "type": "Person"
      }, 
      {
        "familyName": "G\u00fcntherodt", 
        "givenName": "Hans-Joachim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-97470-0_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-97472-4", 
        "978-3-642-97470-0"
      ], 
      "name": "Scanning Tunneling Microscopy III", 
      "type": "Book"
    }, 
    "keywords": [
      "electronic states", 
      "first-principle local density functional calculation", 
      "tip/sample system", 
      "single apex atom", 
      "scanning tunneling microscopy", 
      "STM/STS", 
      "surface electronic states", 
      "local density functional calculations", 
      "nano-scale region", 
      "apex atom", 
      "surface slab models", 
      "tunneling microscopy", 
      "atomic layers", 
      "electron tunneling", 
      "atomic resolution", 
      "density functional calculations", 
      "tunneling conductance", 
      "STM images", 
      "exotic behavior", 
      "sample surface", 
      "light emission", 
      "tunnel current", 
      "theoretical simulations", 
      "electronic structure", 
      "realistic calculations", 
      "atoms", 
      "functional calculations", 
      "cluster model", 
      "surface system", 
      "slab model", 
      "spectroscopy", 
      "microscopy", 
      "calculations", 
      "atomic", 
      "sample system", 
      "tunneling", 
      "STM", 
      "tip", 
      "state", 
      "emission", 
      "surface", 
      "graphite", 
      "resolution", 
      "current", 
      "scanning", 
      "layer", 
      "images", 
      "conductance", 
      "phenomenon", 
      "interplay", 
      "numerical results", 
      "structure", 
      "simulations", 
      "top", 
      "system", 
      "region", 
      "model", 
      "STS", 
      "features", 
      "apex", 
      "behavior", 
      "example", 
      "results", 
      "same level", 
      "abnormal images", 
      "cases", 
      "levels", 
      "role", 
      "sample surface slab models", 
      "negative tunneling conductance", 
      "Tip Atomic"
    ], 
    "name": "The Role of Tip Atomic and Electronic Structure in Scanning Tunneling Microscopy and Spectroscopy", 
    "pagination": "77-103", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030649822"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-97470-0_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-97470-0_5", 
      "https://app.dimensions.ai/details/publication/pub.1030649822"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_62.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-97470-0_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-97470-0_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-97470-0_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-97470-0_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-97470-0_5'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      23 PREDICATES      97 URIs      90 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-97470-0_5 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ncec0aa26e5724639b3ca2f05a744577c
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description Based on the first-principles Local Density Functional (LDA) calculation of the electronic states both for the tip and the sample surface, theoretical simulation of scanning tunneling microscopy and spectroscopy has been performed for various surface systems. For the tip, cluster models made of 10–20 atoms are utilized and for the sample surface slab models with several atomic layers are adopted. It is found that most of the tunnel current is concentrated on a single apex atom, if the other atoms on the top of the tip are not located on the same level. In such a case the STM image is normal with an atomic resolution. However, if the apex of the tip is formed by more than one atom, abnormal images tend to be formed. We can verify this feature by the numerical results for graphite, Si(100), and Si(111)/Ag surfaces. Due to the interplay between the tip and surface electronic states, some exotic behavior of electron tunneling can be observed in STM/STS. As examples we discuss the negative tunneling conductance observed in a nano-scale region, and the light emission from STM. These phenomena are explained based on realistic calculations of electronic states of the tip/sample system.
7 schema:editor N6bab5715fa204cb3b9f5370b6d72d1e1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf707cec7cca349969f83feaf2405c23d
12 schema:keywords STM
13 STM images
14 STM/STS
15 STS
16 Tip Atomic
17 abnormal images
18 apex
19 apex atom
20 atomic
21 atomic layers
22 atomic resolution
23 atoms
24 behavior
25 calculations
26 cases
27 cluster model
28 conductance
29 current
30 density functional calculations
31 electron tunneling
32 electronic states
33 electronic structure
34 emission
35 example
36 exotic behavior
37 features
38 first-principle local density functional calculation
39 functional calculations
40 graphite
41 images
42 interplay
43 layer
44 levels
45 light emission
46 local density functional calculations
47 microscopy
48 model
49 nano-scale region
50 negative tunneling conductance
51 numerical results
52 phenomenon
53 realistic calculations
54 region
55 resolution
56 results
57 role
58 same level
59 sample surface
60 sample surface slab models
61 sample system
62 scanning
63 scanning tunneling microscopy
64 simulations
65 single apex atom
66 slab model
67 spectroscopy
68 state
69 structure
70 surface
71 surface electronic states
72 surface slab models
73 surface system
74 system
75 theoretical simulations
76 tip
77 tip/sample system
78 top
79 tunnel current
80 tunneling
81 tunneling conductance
82 tunneling microscopy
83 schema:name The Role of Tip Atomic and Electronic Structure in Scanning Tunneling Microscopy and Spectroscopy
84 schema:pagination 77-103
85 schema:productId N4bd72de03e9d4e30bdab7bb73f6e6793
86 N6f5e6bfe6bb347b9a6d6aa6b4a144527
87 schema:publisher N8760144c57de40e8bf746328d43b599c
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030649822
89 https://doi.org/10.1007/978-3-642-97470-0_5
90 schema:sdDatePublished 2022-01-01T19:26
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Na622ffd9a72745599a8230fdd5911b4d
93 schema:url https://doi.org/10.1007/978-3-642-97470-0_5
94 sgo:license sg:explorer/license/
95 sgo:sdDataset chapters
96 rdf:type schema:Chapter
97 N2ef14910a1df4594802eca9baa67bdfd rdf:first sg:person.011420022017.34
98 rdf:rest N8dc3d4d2a454483ba64e1e65f05815a1
99 N46a807fb8c914558a8af0b64aad315c8 rdf:first N8a45f14d48c34995a6300728090b7e7c
100 rdf:rest rdf:nil
101 N4bd72de03e9d4e30bdab7bb73f6e6793 schema:name doi
102 schema:value 10.1007/978-3-642-97470-0_5
103 rdf:type schema:PropertyValue
104 N5d73767e85de43fba56ea8f92bc3b637 schema:familyName Wiesendanger
105 schema:givenName Roland
106 rdf:type schema:Person
107 N6bab5715fa204cb3b9f5370b6d72d1e1 rdf:first N5d73767e85de43fba56ea8f92bc3b637
108 rdf:rest N46a807fb8c914558a8af0b64aad315c8
109 N6bffc50e7e2c4b16b284bf504e7a6642 rdf:first sg:person.012402730461.05
110 rdf:rest N71ee02f5376347cb9ad91b3ef4d331f8
111 N6f5e6bfe6bb347b9a6d6aa6b4a144527 schema:name dimensions_id
112 schema:value pub.1030649822
113 rdf:type schema:PropertyValue
114 N71ee02f5376347cb9ad91b3ef4d331f8 rdf:first sg:person.07612474320.43
115 rdf:rest rdf:nil
116 N8760144c57de40e8bf746328d43b599c schema:name Springer Nature
117 rdf:type schema:Organisation
118 N8a45f14d48c34995a6300728090b7e7c schema:familyName Güntherodt
119 schema:givenName Hans-Joachim
120 rdf:type schema:Person
121 N8dc3d4d2a454483ba64e1e65f05815a1 rdf:first sg:person.012557533631.27
122 rdf:rest N6bffc50e7e2c4b16b284bf504e7a6642
123 N92896bd242094396ba7fb6fb4e0aac58 rdf:first sg:person.014274552061.17
124 rdf:rest N2ef14910a1df4594802eca9baa67bdfd
125 Na622ffd9a72745599a8230fdd5911b4d schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Ncec0aa26e5724639b3ca2f05a744577c rdf:first sg:person.016242434421.06
128 rdf:rest N92896bd242094396ba7fb6fb4e0aac58
129 Nf707cec7cca349969f83feaf2405c23d schema:isbn 978-3-642-97470-0
130 978-3-642-97472-4
131 schema:name Scanning Tunneling Microscopy III
132 rdf:type schema:Book
133 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
137 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
138 rdf:type schema:DefinedTerm
139 sg:person.011420022017.34 schema:familyName Isshiki
140 schema:givenName N.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420022017.34
142 rdf:type schema:Person
143 sg:person.012402730461.05 schema:familyName Kageshima
144 schema:givenName H.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402730461.05
146 rdf:type schema:Person
147 sg:person.012557533631.27 schema:familyName Watanabe
148 schema:givenName S.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557533631.27
150 rdf:type schema:Person
151 sg:person.014274552061.17 schema:familyName Kobayashi
152 schema:givenName K.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274552061.17
154 rdf:type schema:Person
155 sg:person.016242434421.06 schema:familyName Tsukada
156 schema:givenName M.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06
158 rdf:type schema:Person
159 sg:person.07612474320.43 schema:familyName Schimizu
160 schema:givenName T.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07612474320.43
162 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...