Ontology type: schema:Chapter
1993
AUTHORSM. Tsukada , K. Kobayashi , N. Isshiki , S. Watanabe , H. Kageshima , T. Schimizu
ABSTRACTBased on the first-principles Local Density Functional (LDA) calculation of the electronic states both for the tip and the sample surface, theoretical simulation of scanning tunneling microscopy and spectroscopy has been performed for various surface systems. For the tip, cluster models made of 10–20 atoms are utilized and for the sample surface slab models with several atomic layers are adopted. It is found that most of the tunnel current is concentrated on a single apex atom, if the other atoms on the top of the tip are not located on the same level. In such a case the STM image is normal with an atomic resolution. However, if the apex of the tip is formed by more than one atom, abnormal images tend to be formed. We can verify this feature by the numerical results for graphite, Si(100), and Si(111)/Ag surfaces. Due to the interplay between the tip and surface electronic states, some exotic behavior of electron tunneling can be observed in STM/STS. As examples we discuss the negative tunneling conductance observed in a nano-scale region, and the light emission from STM. These phenomena are explained based on realistic calculations of electronic states of the tip/sample system. More... »
PAGES77-103
Scanning Tunneling Microscopy III
ISBN
978-3-642-97472-4
978-3-642-97470-0
http://scigraph.springernature.com/pub.10.1007/978-3-642-97470-0_5
DOIhttp://dx.doi.org/10.1007/978-3-642-97470-0_5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1030649822
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"familyName": "Tsukada",
"givenName": "M.",
"id": "sg:person.016242434421.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06"
],
"type": "Person"
},
{
"familyName": "Kobayashi",
"givenName": "K.",
"id": "sg:person.014274552061.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274552061.17"
],
"type": "Person"
},
{
"familyName": "Isshiki",
"givenName": "N.",
"id": "sg:person.011420022017.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420022017.34"
],
"type": "Person"
},
{
"familyName": "Watanabe",
"givenName": "S.",
"id": "sg:person.012557533631.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557533631.27"
],
"type": "Person"
},
{
"familyName": "Kageshima",
"givenName": "H.",
"id": "sg:person.012402730461.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402730461.05"
],
"type": "Person"
},
{
"familyName": "Schimizu",
"givenName": "T.",
"id": "sg:person.07612474320.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07612474320.43"
],
"type": "Person"
}
],
"datePublished": "1993",
"datePublishedReg": "1993-01-01",
"description": "Based on the first-principles Local Density Functional (LDA) calculation of the electronic states both for the tip and the sample surface, theoretical simulation of scanning tunneling microscopy and spectroscopy has been performed for various surface systems. For the tip, cluster models made of 10\u201320 atoms are utilized and for the sample surface slab models with several atomic layers are adopted. It is found that most of the tunnel current is concentrated on a single apex atom, if the other atoms on the top of the tip are not located on the same level. In such a case the STM image is normal with an atomic resolution. However, if the apex of the tip is formed by more than one atom, abnormal images tend to be formed. We can verify this feature by the numerical results for graphite, Si(100), and Si(111)/Ag surfaces. Due to the interplay between the tip and surface electronic states, some exotic behavior of electron tunneling can be observed in STM/STS. As examples we discuss the negative tunneling conductance observed in a nano-scale region, and the light emission from STM. These phenomena are explained based on realistic calculations of electronic states of the tip/sample system.",
"editor": [
{
"familyName": "Wiesendanger",
"givenName": "Roland",
"type": "Person"
},
{
"familyName": "G\u00fcntherodt",
"givenName": "Hans-Joachim",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-97470-0_5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-97472-4",
"978-3-642-97470-0"
],
"name": "Scanning Tunneling Microscopy III",
"type": "Book"
},
"keywords": [
"electronic states",
"tip/sample system",
"first-principles Local Density Functional (LDA) calculation",
"single apex atom",
"surface electronic states",
"STM/STS",
"local density functional calculations",
"scanning tunneling microscopy",
"surface slab models",
"density functional calculations",
"apex atom",
"nano-scale region",
"exotic behavior",
"electron tunneling",
"tunneling conductance",
"atomic layers",
"tunneling microscopy",
"light emission",
"atomic resolution",
"sample surface",
"theoretical simulations",
"electronic structure",
"realistic calculations",
"tunnel current",
"STM images",
"functional calculations",
"cluster model",
"atoms",
"slab model",
"surface system",
"spectroscopy",
"calculations",
"microscopy",
"atomic",
"sample system",
"tunneling",
"state",
"tip",
"STM",
"emission",
"surface",
"resolution",
"current",
"graphite",
"numerical results",
"layer",
"images",
"scanning",
"conductance",
"simulations",
"phenomenon",
"interplay",
"structure",
"top",
"system",
"region",
"model",
"features",
"behavior",
"STS",
"same level",
"apex",
"results",
"example",
"cases",
"levels",
"abnormal images",
"role"
],
"name": "The Role of Tip Atomic and Electronic Structure in Scanning Tunneling Microscopy and Spectroscopy",
"pagination": "77-103",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1030649822"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-97470-0_5"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-97470-0_5",
"https://app.dimensions.ai/details/publication/pub.1030649822"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:41",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_119.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-97470-0_5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-97470-0_5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-97470-0_5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-97470-0_5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-97470-0_5'
This table displays all metadata directly associated to this object as RDF triples.
159 TRIPLES
23 PREDICATES
94 URIs
87 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-97470-0_5 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N0a74ae214f7f450d9eb126b11f1970fc |
4 | ″ | schema:datePublished | 1993 |
5 | ″ | schema:datePublishedReg | 1993-01-01 |
6 | ″ | schema:description | Based on the first-principles Local Density Functional (LDA) calculation of the electronic states both for the tip and the sample surface, theoretical simulation of scanning tunneling microscopy and spectroscopy has been performed for various surface systems. For the tip, cluster models made of 10–20 atoms are utilized and for the sample surface slab models with several atomic layers are adopted. It is found that most of the tunnel current is concentrated on a single apex atom, if the other atoms on the top of the tip are not located on the same level. In such a case the STM image is normal with an atomic resolution. However, if the apex of the tip is formed by more than one atom, abnormal images tend to be formed. We can verify this feature by the numerical results for graphite, Si(100), and Si(111)/Ag surfaces. Due to the interplay between the tip and surface electronic states, some exotic behavior of electron tunneling can be observed in STM/STS. As examples we discuss the negative tunneling conductance observed in a nano-scale region, and the light emission from STM. These phenomena are explained based on realistic calculations of electronic states of the tip/sample system. |
7 | ″ | schema:editor | N971b790739a145cf9429fbcddf840448 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N5cc8266ad79f49f7a79940a507320794 |
12 | ″ | schema:keywords | STM |
13 | ″ | ″ | STM images |
14 | ″ | ″ | STM/STS |
15 | ″ | ″ | STS |
16 | ″ | ″ | abnormal images |
17 | ″ | ″ | apex |
18 | ″ | ″ | apex atom |
19 | ″ | ″ | atomic |
20 | ″ | ″ | atomic layers |
21 | ″ | ″ | atomic resolution |
22 | ″ | ″ | atoms |
23 | ″ | ″ | behavior |
24 | ″ | ″ | calculations |
25 | ″ | ″ | cases |
26 | ″ | ″ | cluster model |
27 | ″ | ″ | conductance |
28 | ″ | ″ | current |
29 | ″ | ″ | density functional calculations |
30 | ″ | ″ | electron tunneling |
31 | ″ | ″ | electronic states |
32 | ″ | ″ | electronic structure |
33 | ″ | ″ | emission |
34 | ″ | ″ | example |
35 | ″ | ″ | exotic behavior |
36 | ″ | ″ | features |
37 | ″ | ″ | first-principles Local Density Functional (LDA) calculation |
38 | ″ | ″ | functional calculations |
39 | ″ | ″ | graphite |
40 | ″ | ″ | images |
41 | ″ | ″ | interplay |
42 | ″ | ″ | layer |
43 | ″ | ″ | levels |
44 | ″ | ″ | light emission |
45 | ″ | ″ | local density functional calculations |
46 | ″ | ″ | microscopy |
47 | ″ | ″ | model |
48 | ″ | ″ | nano-scale region |
49 | ″ | ″ | numerical results |
50 | ″ | ″ | phenomenon |
51 | ″ | ″ | realistic calculations |
52 | ″ | ″ | region |
53 | ″ | ″ | resolution |
54 | ″ | ″ | results |
55 | ″ | ″ | role |
56 | ″ | ″ | same level |
57 | ″ | ″ | sample surface |
58 | ″ | ″ | sample system |
59 | ″ | ″ | scanning |
60 | ″ | ″ | scanning tunneling microscopy |
61 | ″ | ″ | simulations |
62 | ″ | ″ | single apex atom |
63 | ″ | ″ | slab model |
64 | ″ | ″ | spectroscopy |
65 | ″ | ″ | state |
66 | ″ | ″ | structure |
67 | ″ | ″ | surface |
68 | ″ | ″ | surface electronic states |
69 | ″ | ″ | surface slab models |
70 | ″ | ″ | surface system |
71 | ″ | ″ | system |
72 | ″ | ″ | theoretical simulations |
73 | ″ | ″ | tip |
74 | ″ | ″ | tip/sample system |
75 | ″ | ″ | top |
76 | ″ | ″ | tunnel current |
77 | ″ | ″ | tunneling |
78 | ″ | ″ | tunneling conductance |
79 | ″ | ″ | tunneling microscopy |
80 | ″ | schema:name | The Role of Tip Atomic and Electronic Structure in Scanning Tunneling Microscopy and Spectroscopy |
81 | ″ | schema:pagination | 77-103 |
82 | ″ | schema:productId | N0e66db9503ed441aa093c7e2ce008d3c |
83 | ″ | ″ | Nb4d6398199334269b37b4950991b375c |
84 | ″ | schema:publisher | Nf1cc45a063cf48d8b8cfc2cb7bda480c |
85 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030649822 |
86 | ″ | ″ | https://doi.org/10.1007/978-3-642-97470-0_5 |
87 | ″ | schema:sdDatePublished | 2022-05-20T07:41 |
88 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
89 | ″ | schema:sdPublisher | N5024ab1368c94289aa0e5d03635d57a5 |
90 | ″ | schema:url | https://doi.org/10.1007/978-3-642-97470-0_5 |
91 | ″ | sgo:license | sg:explorer/license/ |
92 | ″ | sgo:sdDataset | chapters |
93 | ″ | rdf:type | schema:Chapter |
94 | N0a74ae214f7f450d9eb126b11f1970fc | rdf:first | sg:person.016242434421.06 |
95 | ″ | rdf:rest | N3570420978cd4482bdb22fc7e93b5794 |
96 | N0c69cd685f6f41b3995d1f8790f9fe70 | rdf:first | sg:person.012557533631.27 |
97 | ″ | rdf:rest | Nb2a19992ae5c4c90868465ca09d2549a |
98 | N0e66db9503ed441aa093c7e2ce008d3c | schema:name | doi |
99 | ″ | schema:value | 10.1007/978-3-642-97470-0_5 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | N3570420978cd4482bdb22fc7e93b5794 | rdf:first | sg:person.014274552061.17 |
102 | ″ | rdf:rest | N91f2f5e666104ecf8ee15c4003772e5a |
103 | N5024ab1368c94289aa0e5d03635d57a5 | schema:name | Springer Nature - SN SciGraph project |
104 | ″ | rdf:type | schema:Organization |
105 | N5cc8266ad79f49f7a79940a507320794 | schema:isbn | 978-3-642-97470-0 |
106 | ″ | ″ | 978-3-642-97472-4 |
107 | ″ | schema:name | Scanning Tunneling Microscopy III |
108 | ″ | rdf:type | schema:Book |
109 | N741ce05289a04606949b69cc1bb49968 | rdf:first | Nc95adecafb054e56a89381f02ffa5c09 |
110 | ″ | rdf:rest | rdf:nil |
111 | N91f2f5e666104ecf8ee15c4003772e5a | rdf:first | sg:person.011420022017.34 |
112 | ″ | rdf:rest | N0c69cd685f6f41b3995d1f8790f9fe70 |
113 | N971b790739a145cf9429fbcddf840448 | rdf:first | Nd5fc02d5e62842d098291beb6b7045e2 |
114 | ″ | rdf:rest | N741ce05289a04606949b69cc1bb49968 |
115 | Nb2a19992ae5c4c90868465ca09d2549a | rdf:first | sg:person.012402730461.05 |
116 | ″ | rdf:rest | Nfd1ff318eee04168a29b6d18446563b7 |
117 | Nb4d6398199334269b37b4950991b375c | schema:name | dimensions_id |
118 | ″ | schema:value | pub.1030649822 |
119 | ″ | rdf:type | schema:PropertyValue |
120 | Nc95adecafb054e56a89381f02ffa5c09 | schema:familyName | Güntherodt |
121 | ″ | schema:givenName | Hans-Joachim |
122 | ″ | rdf:type | schema:Person |
123 | Nd5fc02d5e62842d098291beb6b7045e2 | schema:familyName | Wiesendanger |
124 | ″ | schema:givenName | Roland |
125 | ″ | rdf:type | schema:Person |
126 | Nf1cc45a063cf48d8b8cfc2cb7bda480c | schema:name | Springer Nature |
127 | ″ | rdf:type | schema:Organisation |
128 | Nfd1ff318eee04168a29b6d18446563b7 | rdf:first | sg:person.07612474320.43 |
129 | ″ | rdf:rest | rdf:nil |
130 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Physical Sciences |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
134 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | sg:person.011420022017.34 | schema:familyName | Isshiki |
137 | ″ | schema:givenName | N. |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420022017.34 |
139 | ″ | rdf:type | schema:Person |
140 | sg:person.012402730461.05 | schema:familyName | Kageshima |
141 | ″ | schema:givenName | H. |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402730461.05 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.012557533631.27 | schema:familyName | Watanabe |
145 | ″ | schema:givenName | S. |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557533631.27 |
147 | ″ | rdf:type | schema:Person |
148 | sg:person.014274552061.17 | schema:familyName | Kobayashi |
149 | ″ | schema:givenName | K. |
150 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274552061.17 |
151 | ″ | rdf:type | schema:Person |
152 | sg:person.016242434421.06 | schema:familyName | Tsukada |
153 | ″ | schema:givenName | M. |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06 |
155 | ″ | rdf:type | schema:Person |
156 | sg:person.07612474320.43 | schema:familyName | Schimizu |
157 | ″ | schema:givenName | T. |
158 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07612474320.43 |
159 | ″ | rdf:type | schema:Person |