Shapes, Surfaces, and Interfaces in Percolation Clusters View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1985

AUTHORS

Antonio Coniglio

ABSTRACT

Percolation theory is reviewed. Intuitive arguments are given to derive scaling and hyperscaling relations. Above six dimensions the breakdown of hyperscaling is related to the interpenetration of the critical large clusters, and to the appearence at p c of an infinite number of infinite clusters of zero density with fractal dimension d f = 4. The structure of the percolating cluster made of links and blobs is characterized by an infinite set of exponents related to the anomalous voltage distribution in a random resistor network at p c . The surface structure of critical clusters below pc, which is relevant to the study of random superconducting networks, is also discussed. In particular, an exact result is presented which shows that in any dimension the interface of two critical clusters diverge as (p c -p)-1 as the percolation threshold is approached. More... »

PAGES

84-101

References to SciGraph publications

Book

TITLE

Physics of Finely Divided Matter

ISBN

978-3-642-93303-5
978-3-642-93301-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-93301-1_11

DOI

http://dx.doi.org/10.1007/978-3-642-93301-1_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048022141


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Naples Federico II", 
          "id": "https://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "Dipartimento di Fisica, Universita di Napoli, Mostra d\u2019Oltremare, Pad. 19, I-80125\u00a0Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coniglio", 
        "givenName": "Antonio", 
        "id": "sg:person.01227217136.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90060-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008331207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90060-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008331207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-11471-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025371885", 
          "https://doi.org/10.1007/3-540-11471-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-11471-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025371885", 
          "https://doi.org/10.1007/3-540-11471-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01018553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026791413", 
          "https://doi.org/10.1007/bf01018553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/43/7/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030252423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100032680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053748502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01856a061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055819991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1703745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057773691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/9/5/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058968560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/10/11/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059064160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/14/5/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059065652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/15/12/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059065956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/16/13/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059066438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/17/4/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059067201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/18/3/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059067741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/18/3/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059067742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.21.1223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060526907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.21.1223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060526907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.4725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.31.4725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060537281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.35.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060779728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.35.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060779728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.46.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.46.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.1121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.1121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.45.574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.45.574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838746"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1985", 
    "datePublishedReg": "1985-01-01", 
    "description": "Percolation theory is reviewed. Intuitive arguments are given to derive scaling and hyperscaling relations. Above six dimensions the breakdown of hyperscaling is related to the interpenetration of the critical large clusters, and to the appearence at p c of an infinite number of infinite clusters of zero density with fractal dimension d f = 4. The structure of the percolating cluster made of links and blobs is characterized by an infinite set of exponents related to the anomalous voltage distribution in a random resistor network at p c . The surface structure of critical clusters below pc, which is relevant to the study of random superconducting networks, is also discussed. In particular, an exact result is presented which shows that in any dimension the interface of two critical clusters diverge as (p c -p)-1 as the percolation threshold is approached.", 
    "editor": [
      {
        "familyName": "Boccara", 
        "givenName": "Nino", 
        "type": "Person"
      }, 
      {
        "familyName": "Daoud", 
        "givenName": "Mohamed", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-93301-1_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-93303-5", 
        "978-3-642-93301-1"
      ], 
      "name": "Physics of Finely Divided Matter", 
      "type": "Book"
    }, 
    "name": "Shapes, Surfaces, and Interfaces in Percolation Clusters", 
    "pagination": "84-101", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-93301-1_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e4c4b7f8f375f0e19e0eb1d084a537ef403c950f771d047a32265678710e7b06"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048022141"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-93301-1_11", 
      "https://app.dimensions.ai/details/publication/pub.1048022141"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000273.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-93301-1_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-93301-1_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-93301-1_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-93301-1_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-93301-1_11'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      51 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-93301-1_11 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N7d1eb1a1d13c48c89bb8eb363849e493
4 schema:citation sg:pub.10.1007/3-540-11471-8_4
5 sg:pub.10.1007/bf01018553
6 https://doi.org/10.1016/0370-1573(79)90060-7
7 https://doi.org/10.1017/s0305004100032680
8 https://doi.org/10.1021/ja01856a061
9 https://doi.org/10.1063/1.1703745
10 https://doi.org/10.1088/0022-3719/9/5/017
11 https://doi.org/10.1088/0034-4885/43/7/001
12 https://doi.org/10.1088/0305-4470/10/11/008
13 https://doi.org/10.1088/0305-4470/14/5/013
14 https://doi.org/10.1088/0305-4470/15/12/007
15 https://doi.org/10.1088/0305-4470/16/13/006
16 https://doi.org/10.1088/0305-4470/17/4/006
17 https://doi.org/10.1088/0305-4470/18/3/006
18 https://doi.org/10.1088/0305-4470/18/3/007
19 https://doi.org/10.1103/physrevb.21.1223
20 https://doi.org/10.1103/physrevb.31.4725
21 https://doi.org/10.1103/physrevlett.35.327
22 https://doi.org/10.1103/physrevlett.46.250
23 https://doi.org/10.1103/physrevlett.50.77
24 https://doi.org/10.1103/physrevlett.52.1068
25 https://doi.org/10.1103/physrevlett.53.1121
26 https://doi.org/10.1103/physrevlett.53.743
27 https://doi.org/10.1103/revmodphys.45.574
28 schema:datePublished 1985
29 schema:datePublishedReg 1985-01-01
30 schema:description Percolation theory is reviewed. Intuitive arguments are given to derive scaling and hyperscaling relations. Above six dimensions the breakdown of hyperscaling is related to the interpenetration of the critical large clusters, and to the appearence at p c of an infinite number of infinite clusters of zero density with fractal dimension d f = 4. The structure of the percolating cluster made of links and blobs is characterized by an infinite set of exponents related to the anomalous voltage distribution in a random resistor network at p c . The surface structure of critical clusters below pc, which is relevant to the study of random superconducting networks, is also discussed. In particular, an exact result is presented which shows that in any dimension the interface of two critical clusters diverge as (p c -p)-1 as the percolation threshold is approached.
31 schema:editor N5a5911e43ffc4a07a2be8c4d957d418d
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N3195cd549731480c94b076f424f6bb97
36 schema:name Shapes, Surfaces, and Interfaces in Percolation Clusters
37 schema:pagination 84-101
38 schema:productId Nb94a872cb6424cac86265d6ea87fd73f
39 Ned429b78e5da4d5fb265be01e201b41e
40 Nf4d8a9a9939e4673bf16b25c288b3b2f
41 schema:publisher N38cb6f15b3aa4056b4127ac856fb8193
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048022141
43 https://doi.org/10.1007/978-3-642-93301-1_11
44 schema:sdDatePublished 2019-04-15T13:31
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N0040a011e8f54c3882e2abadff74a8e2
47 schema:url http://link.springer.com/10.1007/978-3-642-93301-1_11
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N0040a011e8f54c3882e2abadff74a8e2 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N07976279826f46a5a01955deffe6c4b8 rdf:first Na675fcb362d84a94925d63019a978b98
54 rdf:rest rdf:nil
55 N3195cd549731480c94b076f424f6bb97 schema:isbn 978-3-642-93301-1
56 978-3-642-93303-5
57 schema:name Physics of Finely Divided Matter
58 rdf:type schema:Book
59 N38cb6f15b3aa4056b4127ac856fb8193 schema:location Berlin, Heidelberg
60 schema:name Springer Berlin Heidelberg
61 rdf:type schema:Organisation
62 N5a5911e43ffc4a07a2be8c4d957d418d rdf:first N8b8a149ec4134917a224d4327d32dfd5
63 rdf:rest N07976279826f46a5a01955deffe6c4b8
64 N7d1eb1a1d13c48c89bb8eb363849e493 rdf:first sg:person.01227217136.16
65 rdf:rest rdf:nil
66 N8b8a149ec4134917a224d4327d32dfd5 schema:familyName Boccara
67 schema:givenName Nino
68 rdf:type schema:Person
69 Na675fcb362d84a94925d63019a978b98 schema:familyName Daoud
70 schema:givenName Mohamed
71 rdf:type schema:Person
72 Nb94a872cb6424cac86265d6ea87fd73f schema:name doi
73 schema:value 10.1007/978-3-642-93301-1_11
74 rdf:type schema:PropertyValue
75 Ned429b78e5da4d5fb265be01e201b41e schema:name dimensions_id
76 schema:value pub.1048022141
77 rdf:type schema:PropertyValue
78 Nf4d8a9a9939e4673bf16b25c288b3b2f schema:name readcube_id
79 schema:value e4c4b7f8f375f0e19e0eb1d084a537ef403c950f771d047a32265678710e7b06
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
85 schema:name Statistics
86 rdf:type schema:DefinedTerm
87 sg:person.01227217136.16 schema:affiliation https://www.grid.ac/institutes/grid.4691.a
88 schema:familyName Coniglio
89 schema:givenName Antonio
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227217136.16
91 rdf:type schema:Person
92 sg:pub.10.1007/3-540-11471-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025371885
93 https://doi.org/10.1007/3-540-11471-8_4
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01018553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026791413
96 https://doi.org/10.1007/bf01018553
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0370-1573(79)90060-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008331207
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1017/s0305004100032680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053748502
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1021/ja01856a061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055819991
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.1703745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773691
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1088/0022-3719/9/5/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058968560
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1088/0034-4885/43/7/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030252423
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/0305-4470/10/11/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059064160
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/0305-4470/14/5/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059065652
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1088/0305-4470/15/12/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059065956
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0305-4470/16/13/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059066438
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1088/0305-4470/17/4/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059067201
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0305-4470/18/3/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059067741
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/0305-4470/18/3/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059067742
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.21.1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060526907
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.31.4725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537281
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.35.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060779728
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.46.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786115
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.50.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788861
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.52.1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789668
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.53.1121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790388
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.53.743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791011
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/revmodphys.45.574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838746
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.4691.a schema:alternateName University of Naples Federico II
143 schema:name Dipartimento di Fisica, Universita di Napoli, Mostra d’Oltremare, Pad. 19, I-80125 Napoli, Italy
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...