Degeneracy are repulsion between bands of periodic carbon nanotube junctions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

R. Tamura , M. Tsukada

ABSTRACT

The band structures of the periodic nanotube junctions are investigated by the use of effective mass theory (k · p approximation) and the tight binding model. The periodic junctions are constructed by the periodic introduction of defect pairs, consisting of a pentagonal defect and a heptagonal defect, into the carbon nanotube. We treat the periodic junctions whose unit cell is composed by two kinds of metallic nanotubes. The discussed energy region is near the undoped Fermi level where the channel number is kept to 2, so there are two bands. The degeneracy and repulsion between the two bands are determined only from symmetries. More... »

PAGES

377-380

Book

TITLE

The European Physical Journal D

ISBN

978-3-642-88190-9
978-3-642-88188-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-88188-6_73

DOI

http://dx.doi.org/10.1007/978-3-642-88188-6_73

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1089714948


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamura", 
        "givenName": "R.", 
        "id": "sg:person.07702221245.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07702221245.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsukada", 
        "givenName": "M.", 
        "id": "sg:person.016242434421.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "The band structures of the periodic nanotube junctions are investigated by the use of effective mass theory (k \u00b7 p approximation) and the tight binding model. The periodic junctions are constructed by the periodic introduction of defect pairs, consisting of a pentagonal defect and a heptagonal defect, into the carbon nanotube. We treat the periodic junctions whose unit cell is composed by two kinds of metallic nanotubes. The discussed energy region is near the undoped Fermi level where the channel number is kept to 2, so there are two bands. The degeneracy and repulsion between the two bands are determined only from symmetries.", 
    "editor": [
      {
        "familyName": "Ch\u00e2telain", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Bonard", 
        "givenName": "J.-M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-88188-6_73", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-88190-9", 
        "978-3-642-88188-6"
      ], 
      "name": "The European Physical Journal D", 
      "type": "Book"
    }, 
    "keywords": [
      "nanotube junctions", 
      "theory", 
      "tight binding model", 
      "heptagonal defects", 
      "carbon nanotubes", 
      "nanotubes", 
      "metallic nanotubes", 
      "channel number", 
      "band", 
      "degeneracy", 
      "symmetry", 
      "carbon nanotube junctions", 
      "band structure", 
      "structure", 
      "junctions", 
      "use", 
      "effective mass theory", 
      "mass theory", 
      "binding model", 
      "model", 
      "periodic introduction", 
      "introduction", 
      "defect pairs", 
      "pairs", 
      "pentagonal defects", 
      "unit cell", 
      "kind", 
      "Fermi level", 
      "number", 
      "repulsion", 
      "defects", 
      "cells", 
      "energy region", 
      "region", 
      "levels", 
      "periodic nanotube junctions", 
      "periodic junctions", 
      "undoped Fermi level", 
      "periodic carbon nanotube junctions"
    ], 
    "name": "Degeneracy are repulsion between bands of periodic carbon nanotube junctions", 
    "pagination": "377-380", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1089714948"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-88188-6_73"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-88188-6_73", 
      "https://app.dimensions.ai/details/publication/pub.1089714948"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_269.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-88188-6_73"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-88188-6_73'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-88188-6_73'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-88188-6_73'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-88188-6_73'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-88188-6_73 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author Ne7224b3fb240440bb54e3bdec1d18c3e
4 schema:datePublished 1999
5 schema:datePublishedReg 1999-01-01
6 schema:description The band structures of the periodic nanotube junctions are investigated by the use of effective mass theory (k · p approximation) and the tight binding model. The periodic junctions are constructed by the periodic introduction of defect pairs, consisting of a pentagonal defect and a heptagonal defect, into the carbon nanotube. We treat the periodic junctions whose unit cell is composed by two kinds of metallic nanotubes. The discussed energy region is near the undoped Fermi level where the channel number is kept to 2, so there are two bands. The degeneracy and repulsion between the two bands are determined only from symmetries.
7 schema:editor N30e368f96ed54f1ba598e1cc96055672
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne8b5063122224970a928933001331dc4
12 schema:keywords Fermi level
13 band
14 band structure
15 binding model
16 carbon nanotube junctions
17 carbon nanotubes
18 cells
19 channel number
20 defect pairs
21 defects
22 degeneracy
23 effective mass theory
24 energy region
25 heptagonal defects
26 introduction
27 junctions
28 kind
29 levels
30 mass theory
31 metallic nanotubes
32 model
33 nanotube junctions
34 nanotubes
35 number
36 pairs
37 pentagonal defects
38 periodic carbon nanotube junctions
39 periodic introduction
40 periodic junctions
41 periodic nanotube junctions
42 region
43 repulsion
44 structure
45 symmetry
46 theory
47 tight binding model
48 undoped Fermi level
49 unit cell
50 use
51 schema:name Degeneracy are repulsion between bands of periodic carbon nanotube junctions
52 schema:pagination 377-380
53 schema:productId N1b6cf618fc9e4d4dbdf25336f283cfd1
54 N735e456720b64848b99d6e117c1f6c18
55 schema:publisher Ne2b9a3b5cf7440d8a7f05615121dd49d
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089714948
57 https://doi.org/10.1007/978-3-642-88188-6_73
58 schema:sdDatePublished 2022-01-01T19:15
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N419f19792e3c446a947860b33839aac6
61 schema:url https://doi.org/10.1007/978-3-642-88188-6_73
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N1b6cf618fc9e4d4dbdf25336f283cfd1 schema:name dimensions_id
66 schema:value pub.1089714948
67 rdf:type schema:PropertyValue
68 N217a9d43e6de4f02aabfb9086edaa087 rdf:first sg:person.016242434421.06
69 rdf:rest rdf:nil
70 N30e368f96ed54f1ba598e1cc96055672 rdf:first N7feae8eb6bd045fea183c5ef3bb0e87b
71 rdf:rest N98cdc1f13e5a4fc38155cdfeb2d57b62
72 N419f19792e3c446a947860b33839aac6 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N70845e277ea44a07a3fdc4c5cc35628a schema:familyName Bonard
75 schema:givenName J.-M.
76 rdf:type schema:Person
77 N735e456720b64848b99d6e117c1f6c18 schema:name doi
78 schema:value 10.1007/978-3-642-88188-6_73
79 rdf:type schema:PropertyValue
80 N7feae8eb6bd045fea183c5ef3bb0e87b schema:familyName Châtelain
81 schema:givenName A.
82 rdf:type schema:Person
83 N98cdc1f13e5a4fc38155cdfeb2d57b62 rdf:first N70845e277ea44a07a3fdc4c5cc35628a
84 rdf:rest rdf:nil
85 Ne2b9a3b5cf7440d8a7f05615121dd49d schema:name Springer Nature
86 rdf:type schema:Organisation
87 Ne7224b3fb240440bb54e3bdec1d18c3e rdf:first sg:person.07702221245.23
88 rdf:rest N217a9d43e6de4f02aabfb9086edaa087
89 Ne8b5063122224970a928933001331dc4 schema:isbn 978-3-642-88188-6
90 978-3-642-88190-9
91 schema:name The European Physical Journal D
92 rdf:type schema:Book
93 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
94 schema:name Technology
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
97 schema:name Nanotechnology
98 rdf:type schema:DefinedTerm
99 sg:person.016242434421.06 schema:affiliation grid-institutes:grid.26999.3d
100 schema:familyName Tsukada
101 schema:givenName M.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06
103 rdf:type schema:Person
104 sg:person.07702221245.23 schema:affiliation grid-institutes:grid.26999.3d
105 schema:familyName Tamura
106 schema:givenName R.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07702221245.23
108 rdf:type schema:Person
109 grid-institutes:grid.26999.3d schema:alternateName Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
110 schema:name Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...