Some Examples of Normed Köthe Spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1966

AUTHORS

W. A. J. Luxemburg , A. C. Zaanen

ABSTRACT

Let X be a non-empty point set, and μ a countably additive and non-negative measure in X. We assume that the Carathéodory extension procedure has already been applied to μ, so that the σ-field Λ on which μ is defined cannot be enlarged by another application of the Carathéodory procedure. Furthermore, it will be assumed that μ is (totally) (σ-finite, i.e., X is the union of a finite or countable number of sets of finite measure. Hence, the triple (X, Λ, μ) is a (totally) σ-finite measure space in the usual terminology. The notation ∫ d μ will denote integration (with respect to μ) over the whole set X, and χE = χE(x) will stand for the characteristic function of the set E ⊂ X. More... »

PAGES

337-350

Book

TITLE

Contributions to Functional Analysis

ISBN

978-3-642-85999-1
978-3-642-85997-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_22

DOI

http://dx.doi.org/10.1007/978-3-642-85997-7_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021280102


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pasadena, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Pasadena, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luxemburg", 
        "givenName": "W. A. J.", 
        "id": "sg:person.016621530177.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016621530177.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden, Niederlande", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Leiden, Niederlande"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaanen", 
        "givenName": "A. C.", 
        "id": "sg:person.011511417777.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511417777.54"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1966", 
    "datePublishedReg": "1966-01-01", 
    "description": "Let X be a non-empty point set, and \u03bc a countably additive and non-negative measure in X. We assume that the Carath\u00e9odory extension procedure has already been applied to \u03bc, so that the \u03c3-field \u039b on which \u03bc is defined cannot be enlarged by another application of the Carath\u00e9odory procedure. Furthermore, it will be assumed that \u03bc is (totally) (\u03c3-finite, i.e., X is the union of a finite or countable number of sets of finite measure. Hence, the triple (X, \u039b, \u03bc) is a (totally) \u03c3-finite measure space in the usual terminology. The notation \u222b d \u03bc will denote integration (with respect to \u03bc) over the whole set X, and \u03c7E = \u03c7E(x) will stand for the characteristic function of the set E \u2282 X.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-85997-7_22", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-85999-1", 
        "978-3-642-85997-7"
      ], 
      "name": "Contributions to Functional Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "non-negative measure", 
      "point sets", 
      "field \u03bb", 
      "extension procedure", 
      "applications", 
      "set", 
      "procedure", 
      "measures", 
      "non-empty point set", 
      "Carath\u00e9odory extension procedure", 
      "Carath\u00e9odory procedure"
    ], 
    "name": "Some Examples of Normed K\u00f6the Spaces", 
    "pagination": "337-350", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021280102"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-85997-7_22"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-85997-7_22", 
      "https://app.dimensions.ai/details/publication/pub.1021280102"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_121.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-85997-7_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_22'


 

This table displays all metadata directly associated to this object as RDF triples.

74 TRIPLES      22 PREDICATES      36 URIs      29 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-85997-7_22 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N025a44fd55cb4458bf906dd869680d95
4 schema:datePublished 1966
5 schema:datePublishedReg 1966-01-01
6 schema:description Let X be a non-empty point set, and μ a countably additive and non-negative measure in X. We assume that the Carathéodory extension procedure has already been applied to μ, so that the σ-field Λ on which μ is defined cannot be enlarged by another application of the Carathéodory procedure. Furthermore, it will be assumed that μ is (totally) (σ-finite, i.e., X is the union of a finite or countable number of sets of finite measure. Hence, the triple (X, Λ, μ) is a (totally) σ-finite measure space in the usual terminology. The notation ∫ d μ will denote integration (with respect to μ) over the whole set X, and χE = χE(x) will stand for the characteristic function of the set E ⊂ X.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nea8b646bd2914adaa56ad11c858e0781
11 schema:keywords Carathéodory extension procedure
12 Carathéodory procedure
13 applications
14 extension procedure
15 field λ
16 measures
17 non-empty point set
18 non-negative measure
19 point sets
20 procedure
21 set
22 schema:name Some Examples of Normed Köthe Spaces
23 schema:pagination 337-350
24 schema:productId N141c118cb7c14d52aa5d9ba5384c1e55
25 N179b8290feea4d17a2a14df34db7e770
26 schema:publisher N52155649bf664dbea8535d2bcd1b070c
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021280102
28 https://doi.org/10.1007/978-3-642-85997-7_22
29 schema:sdDatePublished 2022-01-01T19:07
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N66ba58f76b41485fafcfc90ad3a5724f
32 schema:url https://doi.org/10.1007/978-3-642-85997-7_22
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N025a44fd55cb4458bf906dd869680d95 rdf:first sg:person.016621530177.98
37 rdf:rest Naae3b3bd0bfa46cf942e365cc2dd268c
38 N141c118cb7c14d52aa5d9ba5384c1e55 schema:name dimensions_id
39 schema:value pub.1021280102
40 rdf:type schema:PropertyValue
41 N179b8290feea4d17a2a14df34db7e770 schema:name doi
42 schema:value 10.1007/978-3-642-85997-7_22
43 rdf:type schema:PropertyValue
44 N52155649bf664dbea8535d2bcd1b070c schema:name Springer Nature
45 rdf:type schema:Organisation
46 N66ba58f76b41485fafcfc90ad3a5724f schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Naae3b3bd0bfa46cf942e365cc2dd268c rdf:first sg:person.011511417777.54
49 rdf:rest rdf:nil
50 Nea8b646bd2914adaa56ad11c858e0781 schema:isbn 978-3-642-85997-7
51 978-3-642-85999-1
52 schema:name Contributions to Functional Analysis
53 rdf:type schema:Book
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:person.011511417777.54 schema:affiliation grid-institutes:None
61 schema:familyName Zaanen
62 schema:givenName A. C.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511417777.54
64 rdf:type schema:Person
65 sg:person.016621530177.98 schema:affiliation grid-institutes:None
66 schema:familyName Luxemburg
67 schema:givenName W. A. J.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016621530177.98
69 rdf:type schema:Person
70 grid-institutes:None schema:alternateName Leiden, Niederlande
71 Pasadena, USA
72 schema:name Leiden, Niederlande
73 Pasadena, USA
74 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...