Variations on a Theme by Mikhlin View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1966

AUTHORS

Joseph Nieto

ABSTRACT

In [5] Mikhlin develops the L2 theory of singular integral operators on a simple closed plane curve Γ of class C2. His main results are: The operator H, defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H{\mkern 1mu} \varphi ){\mkern 1mu} (z){\mkern 1mu} = {\mkern 1mu} \frac{1}{{\pi i}}\int\limits_\Gamma {\frac{{\varphi (\zeta )}}{{\zeta {\mkern 1mu} - {\mkern 1mu} z}}d\zeta ,{\mkern 1mu} z{\mkern 1mu} \in {\mkern 1mu} \Gamma } $$\end{document} is a linear bounded operator from L2(Γ) into L2(Γ). More... »

PAGES

331-336

Book

TITLE

Contributions to Functional Analysis

ISBN

978-3-642-85999-1
978-3-642-85997-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_21

DOI

http://dx.doi.org/10.1007/978-3-642-85997-7_21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001855289


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College Park, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "College Park, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nieto", 
        "givenName": "Joseph", 
        "id": "sg:person.013607244467.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607244467.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1966", 
    "datePublishedReg": "1966-01-01", 
    "description": "In [5] Mikhlin develops the L2 theory of singular integral operators on a simple closed plane curve \u0393 of class C2. His main results are:\nThe operator H, defined by\n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(H{\\mkern 1mu} \\varphi ){\\mkern 1mu} (z){\\mkern 1mu}  = {\\mkern 1mu} \\frac{1}{{\\pi i}}\\int\\limits_\\Gamma  {\\frac{{\\varphi (\\zeta )}}{{\\zeta {\\mkern 1mu}  - {\\mkern 1mu} z}}d\\zeta ,{\\mkern 1mu} z{\\mkern 1mu}  \\in {\\mkern 1mu} \\Gamma } $$\\end{document}\nis a linear bounded operator from L2(\u0393) into L2(\u0393).", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-85997-7_21", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-85999-1", 
        "978-3-642-85997-7"
      ], 
      "name": "Contributions to Functional Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "singular integral operators", 
      "integral operators", 
      "L2 theory", 
      "operator H", 
      "curve \u03b3", 
      "class C2", 
      "Mikhlin", 
      "operators", 
      "main results", 
      "linear", 
      "theory", 
      "results", 
      "variation", 
      "C2", 
      "themes", 
      "simple closed plane curve \u0393", 
      "closed plane curve \u0393", 
      "plane curve \u0393"
    ], 
    "name": "Variations on a Theme by Mikhlin", 
    "pagination": "331-336", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001855289"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-85997-7_21"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-85997-7_21", 
      "https://app.dimensions.ai/details/publication/pub.1001855289"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_399.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-85997-7_21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_21'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      22 PREDICATES      43 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-85997-7_21 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1be3db83ad5b4e9ba3b9da9b3c3d97db
4 schema:datePublished 1966
5 schema:datePublishedReg 1966-01-01
6 schema:description In [5] Mikhlin develops the L2 theory of singular integral operators on a simple closed plane curve Γ of class C2. His main results are: The operator H, defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H{\mkern 1mu} \varphi ){\mkern 1mu} (z){\mkern 1mu} = {\mkern 1mu} \frac{1}{{\pi i}}\int\limits_\Gamma {\frac{{\varphi (\zeta )}}{{\zeta {\mkern 1mu} - {\mkern 1mu} z}}d\zeta ,{\mkern 1mu} z{\mkern 1mu} \in {\mkern 1mu} \Gamma } $$\end{document} is a linear bounded operator from L2(Γ) into L2(Γ).
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N2ce4fa1c2145480780a8eac46d56b08d
11 schema:keywords C2
12 L2 theory
13 Mikhlin
14 class C2
15 closed plane curve Γ
16 curve γ
17 integral operators
18 linear
19 main results
20 operator H
21 operators
22 plane curve Γ
23 results
24 simple closed plane curve Γ
25 singular integral operators
26 themes
27 theory
28 variation
29 schema:name Variations on a Theme by Mikhlin
30 schema:pagination 331-336
31 schema:productId N535d664bcf9f4da1a2f53a5b28a2f914
32 N839a1d572b354da18e87a27cc2ba194e
33 schema:publisher Nf666f8f7fe964434a7f26c43912497b9
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001855289
35 https://doi.org/10.1007/978-3-642-85997-7_21
36 schema:sdDatePublished 2021-12-01T20:08
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N81641a7c16744761abe1ce02f124f139
39 schema:url https://doi.org/10.1007/978-3-642-85997-7_21
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N1be3db83ad5b4e9ba3b9da9b3c3d97db rdf:first sg:person.013607244467.52
44 rdf:rest rdf:nil
45 N2ce4fa1c2145480780a8eac46d56b08d schema:isbn 978-3-642-85997-7
46 978-3-642-85999-1
47 schema:name Contributions to Functional Analysis
48 rdf:type schema:Book
49 N535d664bcf9f4da1a2f53a5b28a2f914 schema:name dimensions_id
50 schema:value pub.1001855289
51 rdf:type schema:PropertyValue
52 N81641a7c16744761abe1ce02f124f139 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N839a1d572b354da18e87a27cc2ba194e schema:name doi
55 schema:value 10.1007/978-3-642-85997-7_21
56 rdf:type schema:PropertyValue
57 Nf666f8f7fe964434a7f26c43912497b9 schema:name Springer Nature
58 rdf:type schema:Organisation
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:person.013607244467.52 schema:affiliation grid-institutes:None
66 schema:familyName Nieto
67 schema:givenName Joseph
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607244467.52
69 rdf:type schema:Person
70 grid-institutes:None schema:alternateName College Park, Maryland, USA
71 schema:name College Park, Maryland, USA
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...