On a Map from a Function Space to a Hyperspace View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1966

AUTHORS

E. Michael

ABSTRACT

Let X be a metric space with metric d, and let K (X) be the space of non-empty, compact subsets of X, metrized by the Hausdorff metric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho (A,B) = \max ({\sup _{x \in A}}d(x,B),{\sup _{x \in B}}d(x,A)).$$\end{document}

PAGES

87-88

Book

TITLE

Contributions to Functional Analysis

ISBN

978-3-642-85999-1
978-3-642-85997-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_2

DOI

http://dx.doi.org/10.1007/978-3-642-85997-7_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026376037


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Language, Communication and Culture", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2002", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cultural Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Washington, 98105, Seattle, Wash., USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Mathematics, University of Washington, 98105, Seattle, Wash., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michael", 
        "givenName": "E.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1966", 
    "datePublishedReg": "1966-01-01", 
    "description": "Let X be a metric space with metric d, and let K (X) be the space of non-empty, compact subsets of X, metrized by the Hausdorff metric\n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varrho (A,B) = \\max ({\\sup _{x \\in A}}d(x,B),{\\sup _{x \\in B}}d(x,A)).$$\\end{document}", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-85997-7_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-85999-1", 
        "978-3-642-85997-7"
      ], 
      "name": "Contributions to Functional Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "subset", 
      "space", 
      "maps", 
      "compact subsets", 
      "metric spaces", 
      "Hausdorff", 
      "hyperspace", 
      "function spaces"
    ], 
    "name": "On a Map from a Function Space to a Hyperspace", 
    "pagination": "87-88", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026376037"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-85997-7_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-85997-7_2", 
      "https://app.dimensions.ai/details/publication/pub.1026376037"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_41.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-85997-7_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_2'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      22 PREDICATES      33 URIs      26 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-85997-7_2 schema:about anzsrc-for:20
2 anzsrc-for:2002
3 schema:author N1a27c3884c5748a888dda0fe94f5605b
4 schema:datePublished 1966
5 schema:datePublishedReg 1966-01-01
6 schema:description Let X be a metric space with metric d, and let K (X) be the space of non-empty, compact subsets of X, metrized by the Hausdorff metric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varrho (A,B) = \max ({\sup _{x \in A}}d(x,B),{\sup _{x \in B}}d(x,A)).$$\end{document}
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Na1cff3a38a4240bc9fc97ac04ba42e1c
11 schema:keywords Hausdorff
12 compact subsets
13 function spaces
14 hyperspace
15 maps
16 metric spaces
17 space
18 subset
19 schema:name On a Map from a Function Space to a Hyperspace
20 schema:pagination 87-88
21 schema:productId N0eb6fabf9dea4d408853482d3b44be8c
22 Ne9d0653500b44ec18261403d40627343
23 schema:publisher Nd4e42a2a88794b39aa94c00f6ee25535
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026376037
25 https://doi.org/10.1007/978-3-642-85997-7_2
26 schema:sdDatePublished 2021-12-01T20:09
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N06dd5da3e4a24af78f36a1deaf2cecd8
29 schema:url https://doi.org/10.1007/978-3-642-85997-7_2
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N06dd5da3e4a24af78f36a1deaf2cecd8 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N0eb6fabf9dea4d408853482d3b44be8c schema:name dimensions_id
36 schema:value pub.1026376037
37 rdf:type schema:PropertyValue
38 N1a27c3884c5748a888dda0fe94f5605b rdf:first Nd13ec93260404dceb5935ecb125db15a
39 rdf:rest rdf:nil
40 Na1cff3a38a4240bc9fc97ac04ba42e1c schema:isbn 978-3-642-85997-7
41 978-3-642-85999-1
42 schema:name Contributions to Functional Analysis
43 rdf:type schema:Book
44 Nd13ec93260404dceb5935ecb125db15a schema:affiliation grid-institutes:grid.34477.33
45 schema:familyName Michael
46 schema:givenName E.
47 rdf:type schema:Person
48 Nd4e42a2a88794b39aa94c00f6ee25535 schema:name Springer Nature
49 rdf:type schema:Organisation
50 Ne9d0653500b44ec18261403d40627343 schema:name doi
51 schema:value 10.1007/978-3-642-85997-7_2
52 rdf:type schema:PropertyValue
53 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
54 schema:name Language, Communication and Culture
55 rdf:type schema:DefinedTerm
56 anzsrc-for:2002 schema:inDefinedTermSet anzsrc-for:
57 schema:name Cultural Studies
58 rdf:type schema:DefinedTerm
59 grid-institutes:grid.34477.33 schema:alternateName Department of Mathematics, University of Washington, 98105, Seattle, Wash., USA
60 schema:name Department of Mathematics, University of Washington, 98105, Seattle, Wash., USA
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...