Ratios of Laplace Transforms, Mikusiński Operational Calculus View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1966

AUTHORS

Gregers Krabbe

ABSTRACT

Mikusiński’s theory of convolution quotients [7, 8] yields uniqueness theorems for various kinds of boundary-value problems; further, his theory justifies the standard Heaviside calculations — without the un-necessary assumptions required by Laplace transform techniques. On the other hand, many operational formulas are easier to find by means of the Laplace transformation; especially useful are the inversion formulas and the method of residues. More... »

PAGES

237-245

Book

TITLE

Contributions to Functional Analysis

ISBN

978-3-642-85999-1
978-3-642-85997-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_14

DOI

http://dx.doi.org/10.1007/978-3-642-85997-7_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035600678


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lafayette, Ind., USA", 
          "id": "http://www.grid.ac/institutes/grid.429091.7", 
          "name": [
            "Lafayette, Ind., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krabbe", 
        "givenName": "Gregers", 
        "id": "sg:person.016654141363.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654141363.46"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1966", 
    "datePublishedReg": "1966-01-01", 
    "description": "Mikusi\u0144ski\u2019s theory of convolution quotients [7, 8] yields uniqueness theorems for various kinds of boundary-value problems; further, his theory justifies the standard Heaviside calculations \u2014 without the un-necessary assumptions required by Laplace transform techniques. On the other hand, many operational formulas are easier to find by means of the Laplace transformation; especially useful are the inversion formulas and the method of residues.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-85997-7_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-85999-1", 
        "978-3-642-85997-7"
      ], 
      "name": "Contributions to Functional Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "Mikusi\u0144ski's operational calculus", 
      "boundary-value problem", 
      "operational calculus", 
      "operational formula", 
      "Laplace transform technique", 
      "method of residues", 
      "Laplace transform", 
      "Laplace transformation", 
      "inversion formula", 
      "transform technique", 
      "theory", 
      "theorem", 
      "formula", 
      "calculus", 
      "problem", 
      "assumption", 
      "transform", 
      "transformation", 
      "calculations", 
      "technique", 
      "kind", 
      "means", 
      "hand", 
      "ratio", 
      "yield", 
      "residues", 
      "method", 
      "Mikusi\u0144ski\u2019s theory", 
      "convolution quotients [7, 8] yields", 
      "quotients [7, 8] yields", 
      "standard Heaviside calculations", 
      "Heaviside calculations", 
      "un-necessary assumptions"
    ], 
    "name": "Ratios of Laplace Transforms, Mikusi\u0144ski Operational Calculus", 
    "pagination": "237-245", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035600678"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-85997-7_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-85997-7_14", 
      "https://app.dimensions.ai/details/publication/pub.1035600678"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_142.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-85997-7_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-85997-7_14'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      22 PREDICATES      58 URIs      51 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-85997-7_14 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9240becef7444504a687f3c11c0ceacc
4 schema:datePublished 1966
5 schema:datePublishedReg 1966-01-01
6 schema:description Mikusiński’s theory of convolution quotients [7, 8] yields uniqueness theorems for various kinds of boundary-value problems; further, his theory justifies the standard Heaviside calculations — without the un-necessary assumptions required by Laplace transform techniques. On the other hand, many operational formulas are easier to find by means of the Laplace transformation; especially useful are the inversion formulas and the method of residues.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N8ce1d9fe88164bf18e46d3d02de41ec9
11 schema:keywords Heaviside calculations
12 Laplace transform
13 Laplace transform technique
14 Laplace transformation
15 Mikusiński's operational calculus
16 Mikusiński’s theory
17 assumption
18 boundary-value problem
19 calculations
20 calculus
21 convolution quotients [7, 8] yields
22 formula
23 hand
24 inversion formula
25 kind
26 means
27 method
28 method of residues
29 operational calculus
30 operational formula
31 problem
32 quotients [7, 8] yields
33 ratio
34 residues
35 standard Heaviside calculations
36 technique
37 theorem
38 theory
39 transform
40 transform technique
41 transformation
42 un-necessary assumptions
43 yield
44 schema:name Ratios of Laplace Transforms, Mikusiński Operational Calculus
45 schema:pagination 237-245
46 schema:productId Nf47331b7349f4ae6873cd606dcd0bb6e
47 Nf4f8be8ae06d47abaed463bafe8fe49d
48 schema:publisher Nc6e37dc75e5e42c0be2204afbdb27d53
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035600678
50 https://doi.org/10.1007/978-3-642-85997-7_14
51 schema:sdDatePublished 2021-11-01T18:47
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nd7fce5e87fcd4dae9305248b90388507
54 schema:url https://doi.org/10.1007/978-3-642-85997-7_14
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N8ce1d9fe88164bf18e46d3d02de41ec9 schema:isbn 978-3-642-85997-7
59 978-3-642-85999-1
60 schema:name Contributions to Functional Analysis
61 rdf:type schema:Book
62 N9240becef7444504a687f3c11c0ceacc rdf:first sg:person.016654141363.46
63 rdf:rest rdf:nil
64 Nc6e37dc75e5e42c0be2204afbdb27d53 schema:name Springer Nature
65 rdf:type schema:Organisation
66 Nd7fce5e87fcd4dae9305248b90388507 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nf47331b7349f4ae6873cd606dcd0bb6e schema:name doi
69 schema:value 10.1007/978-3-642-85997-7_14
70 rdf:type schema:PropertyValue
71 Nf4f8be8ae06d47abaed463bafe8fe49d schema:name dimensions_id
72 schema:value pub.1035600678
73 rdf:type schema:PropertyValue
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
78 schema:name Pure Mathematics
79 rdf:type schema:DefinedTerm
80 sg:person.016654141363.46 schema:affiliation grid-institutes:grid.429091.7
81 schema:familyName Krabbe
82 schema:givenName Gregers
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016654141363.46
84 rdf:type schema:Person
85 grid-institutes:grid.429091.7 schema:alternateName Lafayette, Ind., USA
86 schema:name Lafayette, Ind., USA
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...