First Passage and Wave Density Analysis by Means of the Computer Package CROSSREG View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

Igor Rychlik , Georg Lindgren

ABSTRACT

First passage times and intercrossing times for critical, constant or timedependent, levels are of central interest in reliability and many other engineering and statistical applications of stochastic processes. For Gaussian processes, very effective numerical algorithms can be constructed by means of Slepian models and regression approximations. A Slepian model is a process that describes the process behaviour conditioned on a level crossing. By conditioning on suitably chosen random variables one can obtain quite accurate integral expressions of low dimension, for the passage time density, simply by neglecting a small residual. The regression approximation has been systematically developed by Rychlik (1987). For an account of Slepian models and regression approximations, see Lindgren & Rychlik (1991). CROSSREG is a package of FORTRAN subroutines, which perform intelligent transformation and numerical integration in regression aprroximations in order to produce high accuracy approximations of the density of first passage and intercrossing times; see Rychlik & Lindgren (1990). More... »

PAGES

453-463

Book

TITLE

Nonlinear Stochastic Mechanics

ISBN

978-3-642-84791-2
978-3-642-84789-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-84789-9_39

DOI

http://dx.doi.org/10.1007/978-3-642-84789-9_39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009665274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rychlik", 
        "givenName": "Igor", 
        "id": "sg:person.015546022606.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindgren", 
        "givenName": "Georg", 
        "id": "sg:person.012274436413.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1992", 
    "datePublishedReg": "1992-01-01", 
    "description": "First passage times and intercrossing times for critical, constant or timedependent, levels are of central interest in reliability and many other engineering and statistical applications of stochastic processes. For Gaussian processes, very effective numerical algorithms can be constructed by means of Slepian models and regression approximations. A Slepian model is a process that describes the process behaviour conditioned on a level crossing. By conditioning on suitably chosen random variables one can obtain quite accurate integral expressions of low dimension, for the passage time density, simply by neglecting a small residual. The regression approximation has been systematically developed by Rychlik (1987). For an account of Slepian models and regression approximations, see Lindgren & Rychlik (1991). CROSSREG is a package of FORTRAN subroutines, which perform intelligent transformation and numerical integration in regression aprroximations in order to produce high accuracy approximations of the density of first passage and intercrossing times; see Rychlik & Lindgren (1990).", 
    "editor": [
      {
        "familyName": "Bellomo", 
        "givenName": "Nicola", 
        "type": "Person"
      }, 
      {
        "familyName": "Casciati", 
        "givenName": "Fabio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-84789-9_39", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-84791-2", 
        "978-3-642-84789-9"
      ], 
      "name": "Nonlinear Stochastic Mechanics", 
      "type": "Book"
    }, 
    "keywords": [
      "regression approximation", 
      "Slepian model", 
      "high accuracy approximation", 
      "accurate integral expressions", 
      "effective numerical algorithm", 
      "passage time density", 
      "first passage time", 
      "statistical applications", 
      "accuracy approximation", 
      "stochastic process", 
      "random variables", 
      "numerical algorithm", 
      "numerical integration", 
      "lower dimension", 
      "Gaussian process", 
      "Rychlik", 
      "FORTRAN subroutines", 
      "time density", 
      "integral expression", 
      "approximation", 
      "passage time", 
      "process behavior", 
      "small residuals", 
      "level crossings", 
      "first passage", 
      "model", 
      "central interest", 
      "algorithm", 
      "residuals", 
      "subroutine", 
      "variables", 
      "timedependent", 
      "Lindgren", 
      "package", 
      "dimensions", 
      "applications", 
      "reliability", 
      "means", 
      "intelligent transformation", 
      "engineering", 
      "transformation", 
      "integration", 
      "process", 
      "time", 
      "order", 
      "account", 
      "interest", 
      "crossing", 
      "analysis", 
      "behavior", 
      "density", 
      "density analysis", 
      "conditioning", 
      "expression", 
      "passage", 
      "levels", 
      "CROSSREG", 
      "regression aprroximations", 
      "aprroximations", 
      "Wave Density Analysis", 
      "Computer Package CROSSREG", 
      "Package CROSSREG"
    ], 
    "name": "First Passage and Wave Density Analysis by Means of the Computer Package CROSSREG", 
    "pagination": "453-463", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009665274"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-84789-9_39"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-84789-9_39", 
      "https://app.dimensions.ai/details/publication/pub.1009665274"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_412.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-84789-9_39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84789-9_39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84789-9_39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84789-9_39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84789-9_39'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      88 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-84789-9_39 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Naff7acf4533941349354156b2c517484
4 schema:datePublished 1992
5 schema:datePublishedReg 1992-01-01
6 schema:description First passage times and intercrossing times for critical, constant or timedependent, levels are of central interest in reliability and many other engineering and statistical applications of stochastic processes. For Gaussian processes, very effective numerical algorithms can be constructed by means of Slepian models and regression approximations. A Slepian model is a process that describes the process behaviour conditioned on a level crossing. By conditioning on suitably chosen random variables one can obtain quite accurate integral expressions of low dimension, for the passage time density, simply by neglecting a small residual. The regression approximation has been systematically developed by Rychlik (1987). For an account of Slepian models and regression approximations, see Lindgren & Rychlik (1991). CROSSREG is a package of FORTRAN subroutines, which perform intelligent transformation and numerical integration in regression aprroximations in order to produce high accuracy approximations of the density of first passage and intercrossing times; see Rychlik & Lindgren (1990).
7 schema:editor N6c4f73cab0b1452c83c9d7742428418f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N687b36c93aaf4398b0f3698d89d423d9
12 schema:keywords CROSSREG
13 Computer Package CROSSREG
14 FORTRAN subroutines
15 Gaussian process
16 Lindgren
17 Package CROSSREG
18 Rychlik
19 Slepian model
20 Wave Density Analysis
21 account
22 accuracy approximation
23 accurate integral expressions
24 algorithm
25 analysis
26 applications
27 approximation
28 aprroximations
29 behavior
30 central interest
31 conditioning
32 crossing
33 density
34 density analysis
35 dimensions
36 effective numerical algorithm
37 engineering
38 expression
39 first passage
40 first passage time
41 high accuracy approximation
42 integral expression
43 integration
44 intelligent transformation
45 interest
46 level crossings
47 levels
48 lower dimension
49 means
50 model
51 numerical algorithm
52 numerical integration
53 order
54 package
55 passage
56 passage time
57 passage time density
58 process
59 process behavior
60 random variables
61 regression approximation
62 regression aprroximations
63 reliability
64 residuals
65 small residuals
66 statistical applications
67 stochastic process
68 subroutine
69 time
70 time density
71 timedependent
72 transformation
73 variables
74 schema:name First Passage and Wave Density Analysis by Means of the Computer Package CROSSREG
75 schema:pagination 453-463
76 schema:productId N80ec91e2757c4ee5a075e5dd005bef72
77 Necb4b29196c140338cb308009d0e688f
78 schema:publisher Nc25fc52b9a974b08b149a1ffb8ba2017
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009665274
80 https://doi.org/10.1007/978-3-642-84789-9_39
81 schema:sdDatePublished 2022-01-01T19:23
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N886f2abfeb944ff09bdac053e7cf512b
84 schema:url https://doi.org/10.1007/978-3-642-84789-9_39
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N687b36c93aaf4398b0f3698d89d423d9 schema:isbn 978-3-642-84789-9
89 978-3-642-84791-2
90 schema:name Nonlinear Stochastic Mechanics
91 rdf:type schema:Book
92 N6c4f73cab0b1452c83c9d7742428418f rdf:first N8a60e0032a214a21bbac840121d6c292
93 rdf:rest Na52cf5164844472e8f5f4c77e669384f
94 N80ec91e2757c4ee5a075e5dd005bef72 schema:name doi
95 schema:value 10.1007/978-3-642-84789-9_39
96 rdf:type schema:PropertyValue
97 N82cde032e5524d7abc5d56916778d01b rdf:first sg:person.012274436413.00
98 rdf:rest rdf:nil
99 N886f2abfeb944ff09bdac053e7cf512b schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N8a60e0032a214a21bbac840121d6c292 schema:familyName Bellomo
102 schema:givenName Nicola
103 rdf:type schema:Person
104 Na52cf5164844472e8f5f4c77e669384f rdf:first Nbc261671202647a595165f5e6e35458e
105 rdf:rest rdf:nil
106 Naff7acf4533941349354156b2c517484 rdf:first sg:person.015546022606.95
107 rdf:rest N82cde032e5524d7abc5d56916778d01b
108 Nbc261671202647a595165f5e6e35458e schema:familyName Casciati
109 schema:givenName Fabio
110 rdf:type schema:Person
111 Nc25fc52b9a974b08b149a1ffb8ba2017 schema:name Springer Nature
112 rdf:type schema:Organisation
113 Necb4b29196c140338cb308009d0e688f schema:name dimensions_id
114 schema:value pub.1009665274
115 rdf:type schema:PropertyValue
116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
117 schema:name Mathematical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
120 schema:name Statistics
121 rdf:type schema:DefinedTerm
122 sg:person.012274436413.00 schema:affiliation grid-institutes:grid.4514.4
123 schema:familyName Lindgren
124 schema:givenName Georg
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00
126 rdf:type schema:Person
127 sg:person.015546022606.95 schema:affiliation grid-institutes:grid.4514.4
128 schema:familyName Rychlik
129 schema:givenName Igor
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95
131 rdf:type schema:Person
132 grid-institutes:grid.4514.4 schema:alternateName Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden
133 schema:name Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...