First Passage and Wave Density Analysis by Means of the Computer Package CROSSREG View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

Igor Rychlik , Georg Lindgren

ABSTRACT

First passage times and intercrossing times for critical, constant or timedependent, levels are of central interest in reliability and many other engineering and statistical applications of stochastic processes. For Gaussian processes, very effective numerical algorithms can be constructed by means of Slepian models and regression approximations. A Slepian model is a process that describes the process behaviour conditioned on a level crossing. By conditioning on suitably chosen random variables one can obtain quite accurate integral expressions of low dimension, for the passage time density, simply by neglecting a small residual. The regression approximation has been systematically developed by Rychlik (1987). For an account of Slepian models and regression approximations, see Lindgren & Rychlik (1991). CROSSREG is a package of FORTRAN subroutines, which perform intelligent transformation and numerical integration in regression aprroximations in order to produce high accuracy approximations of the density of first passage and intercrossing times; see Rychlik & Lindgren (1990). More... »

PAGES

453-463

Book

TITLE

Nonlinear Stochastic Mechanics

ISBN

978-3-642-84791-2
978-3-642-84789-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-84789-9_39

DOI

http://dx.doi.org/10.1007/978-3-642-84789-9_39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009665274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rychlik", 
        "givenName": "Igor", 
        "id": "sg:person.015546022606.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindgren", 
        "givenName": "Georg", 
        "id": "sg:person.012274436413.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1992", 
    "datePublishedReg": "1992-01-01", 
    "description": "First passage times and intercrossing times for critical, constant or timedependent, levels are of central interest in reliability and many other engineering and statistical applications of stochastic processes. For Gaussian processes, very effective numerical algorithms can be constructed by means of Slepian models and regression approximations. A Slepian model is a process that describes the process behaviour conditioned on a level crossing. By conditioning on suitably chosen random variables one can obtain quite accurate integral expressions of low dimension, for the passage time density, simply by neglecting a small residual. The regression approximation has been systematically developed by Rychlik (1987). For an account of Slepian models and regression approximations, see Lindgren & Rychlik (1991). CROSSREG is a package of FORTRAN subroutines, which perform intelligent transformation and numerical integration in regression aprroximations in order to produce high accuracy approximations of the density of first passage and intercrossing times; see Rychlik & Lindgren (1990).", 
    "editor": [
      {
        "familyName": "Bellomo", 
        "givenName": "Nicola", 
        "type": "Person"
      }, 
      {
        "familyName": "Casciati", 
        "givenName": "Fabio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-84789-9_39", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-84791-2", 
        "978-3-642-84789-9"
      ], 
      "name": "Nonlinear Stochastic Mechanics", 
      "type": "Book"
    }, 
    "keywords": [
      "regression approximation", 
      "Slepian model", 
      "high accuracy approximation", 
      "effective numerical algorithm", 
      "passage time density", 
      "first passage time", 
      "accurate integral expressions", 
      "statistical applications", 
      "accuracy approximation", 
      "random variables", 
      "stochastic process", 
      "numerical algorithm", 
      "Gaussian process", 
      "numerical integration", 
      "lower dimension", 
      "integral expression", 
      "time density", 
      "approximation", 
      "passage time", 
      "FORTRAN subroutines", 
      "Rychlik", 
      "level crossings", 
      "small residuals", 
      "process behavior", 
      "first passage", 
      "model", 
      "central interest", 
      "Lindgren", 
      "algorithm", 
      "timedependent", 
      "residuals", 
      "subroutine", 
      "density", 
      "means", 
      "dimensions", 
      "variables", 
      "package", 
      "account", 
      "applications", 
      "crossing", 
      "density analysis", 
      "transformation", 
      "time", 
      "order", 
      "process", 
      "reliability", 
      "engineering", 
      "intelligent transformation", 
      "behavior", 
      "interest", 
      "integration", 
      "analysis", 
      "passage", 
      "conditioning", 
      "expression", 
      "levels"
    ], 
    "name": "First Passage and Wave Density Analysis by Means of the Computer Package CROSSREG", 
    "pagination": "453-463", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009665274"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-84789-9_39"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-84789-9_39", 
      "https://app.dimensions.ai/details/publication/pub.1009665274"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_123.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-84789-9_39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84789-9_39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84789-9_39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84789-9_39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84789-9_39'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      23 PREDICATES      82 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-84789-9_39 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5a1ef1c19551495eb509fa465d357a5e
4 schema:datePublished 1992
5 schema:datePublishedReg 1992-01-01
6 schema:description First passage times and intercrossing times for critical, constant or timedependent, levels are of central interest in reliability and many other engineering and statistical applications of stochastic processes. For Gaussian processes, very effective numerical algorithms can be constructed by means of Slepian models and regression approximations. A Slepian model is a process that describes the process behaviour conditioned on a level crossing. By conditioning on suitably chosen random variables one can obtain quite accurate integral expressions of low dimension, for the passage time density, simply by neglecting a small residual. The regression approximation has been systematically developed by Rychlik (1987). For an account of Slepian models and regression approximations, see Lindgren & Rychlik (1991). CROSSREG is a package of FORTRAN subroutines, which perform intelligent transformation and numerical integration in regression aprroximations in order to produce high accuracy approximations of the density of first passage and intercrossing times; see Rychlik & Lindgren (1990).
7 schema:editor Nab743f3a777947cf8ea4465dfe938294
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nde5307c8174e460c822008ed19e42fc5
12 schema:keywords FORTRAN subroutines
13 Gaussian process
14 Lindgren
15 Rychlik
16 Slepian model
17 account
18 accuracy approximation
19 accurate integral expressions
20 algorithm
21 analysis
22 applications
23 approximation
24 behavior
25 central interest
26 conditioning
27 crossing
28 density
29 density analysis
30 dimensions
31 effective numerical algorithm
32 engineering
33 expression
34 first passage
35 first passage time
36 high accuracy approximation
37 integral expression
38 integration
39 intelligent transformation
40 interest
41 level crossings
42 levels
43 lower dimension
44 means
45 model
46 numerical algorithm
47 numerical integration
48 order
49 package
50 passage
51 passage time
52 passage time density
53 process
54 process behavior
55 random variables
56 regression approximation
57 reliability
58 residuals
59 small residuals
60 statistical applications
61 stochastic process
62 subroutine
63 time
64 time density
65 timedependent
66 transformation
67 variables
68 schema:name First Passage and Wave Density Analysis by Means of the Computer Package CROSSREG
69 schema:pagination 453-463
70 schema:productId N222b5d4243344bfea38e4c651160f022
71 Nf6e38922c76741779c6b9832fafc0f1e
72 schema:publisher Nf4e32e94825342b48ec1dec542991b67
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009665274
74 https://doi.org/10.1007/978-3-642-84789-9_39
75 schema:sdDatePublished 2022-05-20T07:41
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N92f8c16136344aac8ba788835601f334
78 schema:url https://doi.org/10.1007/978-3-642-84789-9_39
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N222b5d4243344bfea38e4c651160f022 schema:name doi
83 schema:value 10.1007/978-3-642-84789-9_39
84 rdf:type schema:PropertyValue
85 N2c9d0dd72b67465bb75d881712762254 schema:familyName Bellomo
86 schema:givenName Nicola
87 rdf:type schema:Person
88 N5a1ef1c19551495eb509fa465d357a5e rdf:first sg:person.015546022606.95
89 rdf:rest N973e03a122984ea598414e5f8fb9b068
90 N6588c0e953ad434aaa227627345d4f0f rdf:first Nc131750d30eb415398ca27761732c7ee
91 rdf:rest rdf:nil
92 N92f8c16136344aac8ba788835601f334 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N973e03a122984ea598414e5f8fb9b068 rdf:first sg:person.012274436413.00
95 rdf:rest rdf:nil
96 Nab743f3a777947cf8ea4465dfe938294 rdf:first N2c9d0dd72b67465bb75d881712762254
97 rdf:rest N6588c0e953ad434aaa227627345d4f0f
98 Nc131750d30eb415398ca27761732c7ee schema:familyName Casciati
99 schema:givenName Fabio
100 rdf:type schema:Person
101 Nde5307c8174e460c822008ed19e42fc5 schema:isbn 978-3-642-84789-9
102 978-3-642-84791-2
103 schema:name Nonlinear Stochastic Mechanics
104 rdf:type schema:Book
105 Nf4e32e94825342b48ec1dec542991b67 schema:name Springer Nature
106 rdf:type schema:Organisation
107 Nf6e38922c76741779c6b9832fafc0f1e schema:name dimensions_id
108 schema:value pub.1009665274
109 rdf:type schema:PropertyValue
110 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
111 schema:name Mathematical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
114 schema:name Statistics
115 rdf:type schema:DefinedTerm
116 sg:person.012274436413.00 schema:affiliation grid-institutes:grid.4514.4
117 schema:familyName Lindgren
118 schema:givenName Georg
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00
120 rdf:type schema:Person
121 sg:person.015546022606.95 schema:affiliation grid-institutes:grid.4514.4
122 schema:familyName Rychlik
123 schema:givenName Igor
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95
125 rdf:type schema:Person
126 grid-institutes:grid.4514.4 schema:alternateName Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden
127 schema:name Dept of Mathematical Statistics, Lund Institute of Technology, Box 118, S-221 00, Lund, Sweden
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...