Skyrmions Scattering in (2+1) Dimensions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

B. Piette , W. J. Zakrzewski

ABSTRACT

We consider instanton solutions of the O(3)σ-model in two Euclidian dimensions modified by the addition of appropriate potential and skyrme-like terms as static solitons — skyrmions of the same model in (2 + 1) dimensions. We find that the addition of the potential and skyrme terms stabilises the skyrmions and that the force between them is repulsive. In the scattering process initiated at low relative velocities the skyrmions bounce back while at larger velocities they scatter at right angles. The scattering is quasi-elastic and the skyrmions preserve their shape after the collision. We study the time evolution of a family of two soliton configurations corresponding to different relative orientations of the skyrmions in the O(3) space. More... »

PAGES

325-329

Book

TITLE

Solitons and Chaos

ISBN

978-3-540-54389-3
978-3-642-84570-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-84570-3_43

DOI

http://dx.doi.org/10.1007/978-3-642-84570-3_43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042446868


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "20500, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematical Sciences, Univerity of Durham, DH1 3LE, Durham, England", 
            "20500, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piette", 
        "givenName": "B.", 
        "id": "sg:person.014121444104.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "20500, Turku, Finland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematical Sciences, Univerity of Durham, DH1 3LE, Durham, England", 
            "20500, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zakrzewski", 
        "givenName": "W. J.", 
        "id": "sg:person.014640770123.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014640770123.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "We consider instanton solutions of the O(3)\u03c3-model in two Euclidian dimensions modified by the addition of appropriate potential and skyrme-like terms as static solitons \u2014 skyrmions of the same model in (2 + 1) dimensions. We find that the addition of the potential and skyrme terms stabilises the skyrmions and that the force between them is repulsive. In the scattering process initiated at low relative velocities the skyrmions bounce back while at larger velocities they scatter at right angles. The scattering is quasi-elastic and the skyrmions preserve their shape after the collision. We study the time evolution of a family of two soliton configurations corresponding to different relative orientations of the skyrmions in the O(3) space.", 
    "editor": [
      {
        "familyName": "Antoniou", 
        "givenName": "Ioannis", 
        "type": "Person"
      }, 
      {
        "familyName": "Lambert", 
        "givenName": "Franklin J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-84570-3_43", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-54389-3", 
        "978-3-642-84570-3"
      ], 
      "name": "Solitons and Chaos", 
      "type": "Book"
    }, 
    "keywords": [
      "skyrmions", 
      "scattering process", 
      "low relative velocities", 
      "large velocities", 
      "time evolution", 
      "soliton configurations", 
      "different relative orientations", 
      "instanton solutions", 
      "relative velocity", 
      "relative orientation", 
      "dimensions", 
      "right angles", 
      "scattering", 
      "collisions", 
      "velocity", 
      "terms", 
      "same model", 
      "Skyrme term", 
      "force", 
      "angle", 
      "family", 
      "configuration", 
      "shape", 
      "evolution", 
      "orientation", 
      "space", 
      "solution", 
      "model", 
      "process", 
      "addition", 
      "Euclidian dimension", 
      "Skyrme-like term"
    ], 
    "name": "Skyrmions Scattering in (2+1) Dimensions", 
    "pagination": "325-329", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042446868"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-84570-3_43"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-84570-3_43", 
      "https://app.dimensions.ai/details/publication/pub.1042446868"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_359.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-84570-3_43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84570-3_43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84570-3_43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84570-3_43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-84570-3_43'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-84570-3_43 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N12c5ed4676f6473995f64a36d973b978
4 schema:datePublished 1991
5 schema:datePublishedReg 1991-01-01
6 schema:description We consider instanton solutions of the O(3)σ-model in two Euclidian dimensions modified by the addition of appropriate potential and skyrme-like terms as static solitons — skyrmions of the same model in (2 + 1) dimensions. We find that the addition of the potential and skyrme terms stabilises the skyrmions and that the force between them is repulsive. In the scattering process initiated at low relative velocities the skyrmions bounce back while at larger velocities they scatter at right angles. The scattering is quasi-elastic and the skyrmions preserve their shape after the collision. We study the time evolution of a family of two soliton configurations corresponding to different relative orientations of the skyrmions in the O(3) space.
7 schema:editor N66e406eb11c0472a9c31397649914127
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc46f798b1ae444969cfc8dd7ff66989a
12 schema:keywords Euclidian dimension
13 Skyrme term
14 Skyrme-like term
15 addition
16 angle
17 collisions
18 configuration
19 different relative orientations
20 dimensions
21 evolution
22 family
23 force
24 instanton solutions
25 large velocities
26 low relative velocities
27 model
28 orientation
29 process
30 relative orientation
31 relative velocity
32 right angles
33 same model
34 scattering
35 scattering process
36 shape
37 skyrmions
38 soliton configurations
39 solution
40 space
41 terms
42 time evolution
43 velocity
44 schema:name Skyrmions Scattering in (2+1) Dimensions
45 schema:pagination 325-329
46 schema:productId N235dd0f4a2af4e699793fd323fb78567
47 Neba4f160331f4fa4b9f8c50389464416
48 schema:publisher N7374664187ef4487924d137a0f2e27c4
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042446868
50 https://doi.org/10.1007/978-3-642-84570-3_43
51 schema:sdDatePublished 2021-12-01T20:07
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nca9cf57f9d3a4c53be736952f32eb5cd
54 schema:url https://doi.org/10.1007/978-3-642-84570-3_43
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N12c5ed4676f6473995f64a36d973b978 rdf:first sg:person.014121444104.73
59 rdf:rest N6222a5b5ae9b4cea9772a316ae3df192
60 N235dd0f4a2af4e699793fd323fb78567 schema:name doi
61 schema:value 10.1007/978-3-642-84570-3_43
62 rdf:type schema:PropertyValue
63 N6222a5b5ae9b4cea9772a316ae3df192 rdf:first sg:person.014640770123.34
64 rdf:rest rdf:nil
65 N66e406eb11c0472a9c31397649914127 rdf:first Nd6da9eb2311f42e0933876bab1d70225
66 rdf:rest Nb2a2fb8fcc67477290c29e3fe8e25fc6
67 N7374664187ef4487924d137a0f2e27c4 schema:name Springer Nature
68 rdf:type schema:Organisation
69 Nb2a2fb8fcc67477290c29e3fe8e25fc6 rdf:first Nc09da3e8c15844d1b052adead3d6233a
70 rdf:rest rdf:nil
71 Nc09da3e8c15844d1b052adead3d6233a schema:familyName Lambert
72 schema:givenName Franklin J.
73 rdf:type schema:Person
74 Nc46f798b1ae444969cfc8dd7ff66989a schema:isbn 978-3-540-54389-3
75 978-3-642-84570-3
76 schema:name Solitons and Chaos
77 rdf:type schema:Book
78 Nca9cf57f9d3a4c53be736952f32eb5cd schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nd6da9eb2311f42e0933876bab1d70225 schema:familyName Antoniou
81 schema:givenName Ioannis
82 rdf:type schema:Person
83 Neba4f160331f4fa4b9f8c50389464416 schema:name dimensions_id
84 schema:value pub.1042446868
85 rdf:type schema:PropertyValue
86 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
87 schema:name Psychology and Cognitive Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
90 schema:name Psychology
91 rdf:type schema:DefinedTerm
92 sg:person.014121444104.73 schema:affiliation grid-institutes:None
93 schema:familyName Piette
94 schema:givenName B.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
96 rdf:type schema:Person
97 sg:person.014640770123.34 schema:affiliation grid-institutes:None
98 schema:familyName Zakrzewski
99 schema:givenName W. J.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014640770123.34
101 rdf:type schema:Person
102 grid-institutes:None schema:alternateName 20500, Turku, Finland
103 schema:name 20500, Turku, Finland
104 Department of Mathematical Sciences, Univerity of Durham, DH1 3LE, Durham, England
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...