Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1985

AUTHORS

J. Stoer

ABSTRACT

In this paper it is tried to describe to some extent the theoretical background and several practical aspects of sequential quadratic programming (S.QP) methods for solving the following standard problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\matrix{ {\left( {\rm{p}} \right)\min {\rm{f}}\left( {\rm{x}} \right)} \cr {{\rm{x}} \in {{\rm{R}}^{\rm{n}}}:{{\rm{g}}_{\rm{j}}}\left( {\rm{x}} \right) \le {\rm{0, j = 1,2, \ldots ,mi}}} \cr {{\rm{ }}{{\rm{g}}_{\rm{j}}}\left( {\rm{x}} \right) = {\rm{0, j = mi + 1, \ldots ,m,}}} \cr }$$\end{document} Where f,gj ∈ C2 (Rn). More... »

PAGES

165-207

Book

TITLE

Computational Mathematical Programming

ISBN

978-3-642-82452-4
978-3-642-82450-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-82450-0_6

DOI

http://dx.doi.org/10.1007/978-3-642-82450-0_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042894004


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg Am Hubland, D-8700, W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg Am Hubland, D-8700, W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoer", 
        "givenName": "J.", 
        "id": "sg:person.011465456275.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1985", 
    "datePublishedReg": "1985-01-01", 
    "description": "In this paper it is tried to describe to some extent the theoretical background and several practical aspects of sequential quadratic programming (S.QP) methods for solving the following standard problem \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\matrix{ {\\left( {\\rm{p}} \\right)\\min {\\rm{f}}\\left( {\\rm{x}} \\right)} \\cr {{\\rm{x}} \\in {{\\rm{R}}^{\\rm{n}}}:{{\\rm{g}}_{\\rm{j}}}\\left( {\\rm{x}} \\right) \\le {\\rm{0, j = 1,2, \\ldots ,mi}}} \\cr {{\\rm{ }}{{\\rm{g}}_{\\rm{j}}}\\left( {\\rm{x}} \\right) = {\\rm{0, j = mi + 1, \\ldots ,m,}}} \\cr }$$\\end{document} Where f,gj \u2208 C2 (Rn).", 
    "editor": [
      {
        "familyName": "Schittkowski", 
        "givenName": "Klaus", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-82450-0_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-82452-4", 
        "978-3-642-82450-0"
      ], 
      "name": "Computational Mathematical Programming", 
      "type": "Book"
    }, 
    "keywords": [
      "sequential quadratic programming method", 
      "quadratic programming method", 
      "nonlinear program", 
      "standard problems", 
      "programming method", 
      "theoretical background", 
      "practical aspects", 
      "problem", 
      "principles", 
      "GJ", 
      "aspects", 
      "background", 
      "C2", 
      "program", 
      "extent", 
      "method", 
      "paper"
    ], 
    "name": "Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs", 
    "pagination": "165-207", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042894004"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-82450-0_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-82450-0_6", 
      "https://app.dimensions.ai/details/publication/pub.1042894004"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_143.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-82450-0_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82450-0_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82450-0_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82450-0_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82450-0_6'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      23 PREDICATES      43 URIs      36 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-82450-0_6 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N508db3956f6649df9881a8c639048f05
4 schema:datePublished 1985
5 schema:datePublishedReg 1985-01-01
6 schema:description In this paper it is tried to describe to some extent the theoretical background and several practical aspects of sequential quadratic programming (S.QP) methods for solving the following standard problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\matrix{ {\left( {\rm{p}} \right)\min {\rm{f}}\left( {\rm{x}} \right)} \cr {{\rm{x}} \in {{\rm{R}}^{\rm{n}}}:{{\rm{g}}_{\rm{j}}}\left( {\rm{x}} \right) \le {\rm{0, j = 1,2, \ldots ,mi}}} \cr {{\rm{ }}{{\rm{g}}_{\rm{j}}}\left( {\rm{x}} \right) = {\rm{0, j = mi + 1, \ldots ,m,}}} \cr }$$\end{document} Where f,gj ∈ C2 (Rn).
7 schema:editor N9af522274cae43cc9eae7c2be09d99d0
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4eb30d43c55945219e4b5d9ea6a90c36
12 schema:keywords C2
13 GJ
14 aspects
15 background
16 extent
17 method
18 nonlinear program
19 paper
20 practical aspects
21 principles
22 problem
23 program
24 programming method
25 quadratic programming method
26 sequential quadratic programming method
27 standard problems
28 theoretical background
29 schema:name Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs
30 schema:pagination 165-207
31 schema:productId N410b19a9c2444c8a99397292f9c7c55b
32 N880fa0465f0248cdba78dcfb7e5dabc2
33 schema:publisher Nb82037b411d2413daef4c648ca001349
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042894004
35 https://doi.org/10.1007/978-3-642-82450-0_6
36 schema:sdDatePublished 2022-06-01T22:28
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N4a096e93da654c23b0aca32fd444d075
39 schema:url https://doi.org/10.1007/978-3-642-82450-0_6
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N410b19a9c2444c8a99397292f9c7c55b schema:name doi
44 schema:value 10.1007/978-3-642-82450-0_6
45 rdf:type schema:PropertyValue
46 N4a096e93da654c23b0aca32fd444d075 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N4eb30d43c55945219e4b5d9ea6a90c36 schema:isbn 978-3-642-82450-0
49 978-3-642-82452-4
50 schema:name Computational Mathematical Programming
51 rdf:type schema:Book
52 N508db3956f6649df9881a8c639048f05 rdf:first sg:person.011465456275.61
53 rdf:rest rdf:nil
54 N6619137571ca4ac0a8ed52b9806e69d9 schema:familyName Schittkowski
55 schema:givenName Klaus
56 rdf:type schema:Person
57 N880fa0465f0248cdba78dcfb7e5dabc2 schema:name dimensions_id
58 schema:value pub.1042894004
59 rdf:type schema:PropertyValue
60 N9af522274cae43cc9eae7c2be09d99d0 rdf:first N6619137571ca4ac0a8ed52b9806e69d9
61 rdf:rest rdf:nil
62 Nb82037b411d2413daef4c648ca001349 schema:name Springer Nature
63 rdf:type schema:Organisation
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
68 schema:name Computer Software
69 rdf:type schema:DefinedTerm
70 sg:person.011465456275.61 schema:affiliation grid-institutes:grid.8379.5
71 schema:familyName Stoer
72 schema:givenName J.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61
74 rdf:type schema:Person
75 grid-institutes:grid.8379.5 schema:alternateName Institut für Angewandte Mathematik und Statistik, Universität Würzburg Am Hubland, D-8700, Würzburg, Germany
76 schema:name Institut für Angewandte Mathematik und Statistik, Universität Würzburg Am Hubland, D-8700, Würzburg, Germany
77 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...