Colliding Pulse Femtosecond Lasers and Applications to the Measurement of Optical Parameters View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

J.-C. Diels , I. C. McMichael , F. Simoni , R. Torti , H. Vanherzeele , W. Dietel , E. Döpel , W. Rudolph , B. Wilhelmi , J. Fontaine

ABSTRACT

Propagation of short coherent pulses through media poses new constraints on materials, as well as on the design of experimental set ups, in order to maintain the best possible temporal resolution. Hence the need for accurate and sensitive techniques to measure the change in pulse parameters transmitted through (or reflected off) optical samples. We show that the mode locked ring laser is in itself an accurate tool to investigate linear and nonlinear optical properties of its components. Measurements of transmission and reflection can be performed intra or extracavity. Intracavity measurements are more accurate because of the multiple passages through the sample. As in cw intracavity spectroscopy the enhancement of sensitivity when operating in the stationary mode-locking regime is of the order of the mean number of cycles in the cavity. The absorber jet is in ideal configuration to study the phase relaxation time of the dye by Degenerate Four Wave Mixing (DFWM). Because of the colliding pulse mode locking process, the two “pump pulses” for the DFWM interaction are simultaneously present in the jet, while the laser output itself can be used for the probe pulse. The “thin sample” condition required to obtain high temporal resolution in DFWM | l | is also met in such a laser. More... »

PAGES

30-34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-82378-7_8

DOI

http://dx.doi.org/10.1007/978-3-642-82378-7_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045951083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diels", 
        "givenName": "J.-C.", 
        "id": "sg:person.012246756737.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246756737.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McMichael", 
        "givenName": "I. C.", 
        "id": "sg:person.07623426413.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07623426413.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simoni", 
        "givenName": "F.", 
        "id": "sg:person.01354437625.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354437625.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torti", 
        "givenName": "R.", 
        "id": "sg:person.01174751143.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174751143.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanherzeele", 
        "givenName": "H.", 
        "id": "sg:person.01017237341.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017237341.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich-Schiller-Universit\u00e4t, DDR-6900, Jena, German Democratic Republic", 
          "id": "http://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Friedrich-Schiller-Universit\u00e4t, DDR-6900, Jena, German Democratic Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dietel", 
        "givenName": "W.", 
        "id": "sg:person.01031043354.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031043354.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich-Schiller-Universit\u00e4t, DDR-6900, Jena, German Democratic Republic", 
          "id": "http://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Friedrich-Schiller-Universit\u00e4t, DDR-6900, Jena, German Democratic Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00f6pel", 
        "givenName": "E.", 
        "id": "sg:person.010624042460.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010624042460.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich-Schiller-Universit\u00e4t, DDR-6900, Jena, German Democratic Republic", 
          "id": "http://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Friedrich-Schiller-Universit\u00e4t, DDR-6900, Jena, German Democratic Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rudolph", 
        "givenName": "W.", 
        "id": "sg:person.013545075673.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545075673.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich-Schiller-Universit\u00e4t, DDR-6900, Jena, German Democratic Republic", 
          "id": "http://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Friedrich-Schiller-Universit\u00e4t, DDR-6900, Jena, German Democratic Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilhelmi", 
        "givenName": "B.", 
        "id": "sg:person.016251264255.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251264255.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GREPA, Universit\u00e9 Louis Pasteur, F-67000, Strasbourg, France", 
          "id": "http://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "GREPA, Universit\u00e9 Louis Pasteur, F-67000, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fontaine", 
        "givenName": "J.", 
        "id": "sg:person.01104557141.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104557141.95"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "Propagation of short coherent pulses through media poses new constraints on materials, as well as on the design of experimental set ups, in order to maintain the best possible temporal resolution. Hence the need for accurate and sensitive techniques to measure the change in pulse parameters transmitted through (or reflected off) optical samples. We show that the mode locked ring laser is in itself an accurate tool to investigate linear and nonlinear optical properties of its components. Measurements of transmission and reflection can be performed intra or extracavity. Intracavity measurements are more accurate because of the multiple passages through the sample. As in cw intracavity spectroscopy the enhancement of sensitivity when operating in the stationary mode-locking regime is of the order of the mean number of cycles in the cavity. The absorber jet is in ideal configuration to study the phase relaxation time of the dye by Degenerate Four Wave Mixing (DFWM). Because of the colliding pulse mode locking process, the two \u201cpump pulses\u201d for the DFWM interaction are simultaneously present in the jet, while the laser output itself can be used for the probe pulse. The \u201cthin sample\u201d condition required to obtain high temporal resolution in DFWM | l | is also met in such a laser.", 
    "editor": [
      {
        "familyName": "Auston", 
        "givenName": "David H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Eisenthal", 
        "givenName": "Kenneth B.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-82378-7_8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-82380-0", 
        "978-3-642-82378-7"
      ], 
      "name": "Ultrafast Phenomena IV", 
      "type": "Book"
    }, 
    "keywords": [
      "short coherent pulses", 
      "mode-locking regime", 
      "nonlinear optical properties", 
      "degenerate four wave", 
      "phase relaxation time", 
      "measurement of transmission", 
      "probe pulse", 
      "pump pulse", 
      "coherent pulses", 
      "optical samples", 
      "ring laser", 
      "cw intracavity", 
      "laser output", 
      "intracavity measurements", 
      "four-wave", 
      "optical parameters", 
      "femtosecond laser", 
      "absorber jet", 
      "optical properties", 
      "pulse parameters", 
      "pulse mode", 
      "laser", 
      "thin samples", 
      "temporal resolution", 
      "pulses", 
      "relaxation time", 
      "new constraints", 
      "enhancement of sensitivity", 
      "experimental set ups", 
      "high temporal resolution", 
      "jet", 
      "extracavity", 
      "intracavity", 
      "measurements", 
      "DFWM", 
      "sensitive technique", 
      "resolution", 
      "ideal configuration", 
      "mode", 
      "waves", 
      "set ups", 
      "regime", 
      "propagation", 
      "parameters", 
      "cavity", 
      "accurate tool", 
      "materials", 
      "configuration", 
      "properties", 
      "enhancement", 
      "design", 
      "order", 
      "reflection", 
      "dye", 
      "interaction", 
      "samples", 
      "applications", 
      "output", 
      "transmission", 
      "technique", 
      "process", 
      "conditions", 
      "multiple passages", 
      "sensitivity", 
      "cycle", 
      "medium", 
      "constraints", 
      "components", 
      "time", 
      "passage", 
      "tool", 
      "up", 
      "number", 
      "changes", 
      "need", 
      "intra", 
      "mean number"
    ], 
    "name": "Colliding Pulse Femtosecond Lasers and Applications to the Measurement of Optical Parameters", 
    "pagination": "30-34", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045951083"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-82378-7_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-82378-7_8", 
      "https://app.dimensions.ai/details/publication/pub.1045951083"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_102.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-82378-7_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82378-7_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82378-7_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82378-7_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82378-7_8'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      23 PREDICATES      103 URIs      96 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-82378-7_8 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N9f97a54043be4b11ace257f42f7ebd16
4 schema:datePublished 1984
5 schema:datePublishedReg 1984-01-01
6 schema:description Propagation of short coherent pulses through media poses new constraints on materials, as well as on the design of experimental set ups, in order to maintain the best possible temporal resolution. Hence the need for accurate and sensitive techniques to measure the change in pulse parameters transmitted through (or reflected off) optical samples. We show that the mode locked ring laser is in itself an accurate tool to investigate linear and nonlinear optical properties of its components. Measurements of transmission and reflection can be performed intra or extracavity. Intracavity measurements are more accurate because of the multiple passages through the sample. As in cw intracavity spectroscopy the enhancement of sensitivity when operating in the stationary mode-locking regime is of the order of the mean number of cycles in the cavity. The absorber jet is in ideal configuration to study the phase relaxation time of the dye by Degenerate Four Wave Mixing (DFWM). Because of the colliding pulse mode locking process, the two “pump pulses” for the DFWM interaction are simultaneously present in the jet, while the laser output itself can be used for the probe pulse. The “thin sample” condition required to obtain high temporal resolution in DFWM | l | is also met in such a laser.
7 schema:editor N0d41153854c045c886efcfa3e21ed2d1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd2daa01a8973488882f0aa571205fde1
12 schema:keywords DFWM
13 absorber jet
14 accurate tool
15 applications
16 cavity
17 changes
18 coherent pulses
19 components
20 conditions
21 configuration
22 constraints
23 cw intracavity
24 cycle
25 degenerate four wave
26 design
27 dye
28 enhancement
29 enhancement of sensitivity
30 experimental set ups
31 extracavity
32 femtosecond laser
33 four-wave
34 high temporal resolution
35 ideal configuration
36 interaction
37 intra
38 intracavity
39 intracavity measurements
40 jet
41 laser
42 laser output
43 materials
44 mean number
45 measurement of transmission
46 measurements
47 medium
48 mode
49 mode-locking regime
50 multiple passages
51 need
52 new constraints
53 nonlinear optical properties
54 number
55 optical parameters
56 optical properties
57 optical samples
58 order
59 output
60 parameters
61 passage
62 phase relaxation time
63 probe pulse
64 process
65 propagation
66 properties
67 pulse mode
68 pulse parameters
69 pulses
70 pump pulse
71 reflection
72 regime
73 relaxation time
74 resolution
75 ring laser
76 samples
77 sensitive technique
78 sensitivity
79 set ups
80 short coherent pulses
81 technique
82 temporal resolution
83 thin samples
84 time
85 tool
86 transmission
87 up
88 waves
89 schema:name Colliding Pulse Femtosecond Lasers and Applications to the Measurement of Optical Parameters
90 schema:pagination 30-34
91 schema:productId Nc9fca2a9988e4746bb53d28e1179b51b
92 Nff1efec7498b4334af1a8840da475845
93 schema:publisher N8426209de1f144a0b41639dd1c32ba99
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045951083
95 https://doi.org/10.1007/978-3-642-82378-7_8
96 schema:sdDatePublished 2022-05-20T07:41
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Nb8a4dca5c8d14e73b6d4aadee5905074
99 schema:url https://doi.org/10.1007/978-3-642-82378-7_8
100 sgo:license sg:explorer/license/
101 sgo:sdDataset chapters
102 rdf:type schema:Chapter
103 N0744e259332345c694710ce461f8dd60 rdf:first sg:person.010624042460.03
104 rdf:rest N567d1e9a24df426c9dd1d491297d615f
105 N0d41153854c045c886efcfa3e21ed2d1 rdf:first N253626ee03ba4e33a7ec0e466d7604b6
106 rdf:rest Ncac9d3873516439e92e452abd46c1b2f
107 N253626ee03ba4e33a7ec0e466d7604b6 schema:familyName Auston
108 schema:givenName David H.
109 rdf:type schema:Person
110 N2da4853ed9054bb38be66bd8b77a6f30 rdf:first sg:person.01174751143.53
111 rdf:rest N55522c2c26714864acde1cb6a5d30714
112 N48291cf227e24354ad6b969d5101f803 rdf:first sg:person.01031043354.21
113 rdf:rest N0744e259332345c694710ce461f8dd60
114 N55522c2c26714864acde1cb6a5d30714 rdf:first sg:person.01017237341.68
115 rdf:rest N48291cf227e24354ad6b969d5101f803
116 N567d1e9a24df426c9dd1d491297d615f rdf:first sg:person.013545075673.19
117 rdf:rest N7c4c962c154b45baaf569f836d253633
118 N63efbf042e3949728781cc2115e09a32 rdf:first sg:person.07623426413.88
119 rdf:rest N80d3fff8884e41c0b30c8775e5749088
120 N7c4c962c154b45baaf569f836d253633 rdf:first sg:person.016251264255.74
121 rdf:rest Ne47c5290bee9496d98a3605c3968e500
122 N80d3fff8884e41c0b30c8775e5749088 rdf:first sg:person.01354437625.21
123 rdf:rest N2da4853ed9054bb38be66bd8b77a6f30
124 N8426209de1f144a0b41639dd1c32ba99 schema:name Springer Nature
125 rdf:type schema:Organisation
126 N9f97a54043be4b11ace257f42f7ebd16 rdf:first sg:person.012246756737.45
127 rdf:rest N63efbf042e3949728781cc2115e09a32
128 Nb8a4dca5c8d14e73b6d4aadee5905074 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Nc9fca2a9988e4746bb53d28e1179b51b schema:name dimensions_id
131 schema:value pub.1045951083
132 rdf:type schema:PropertyValue
133 Ncac9d3873516439e92e452abd46c1b2f rdf:first Nf7f79682a7b041a99e7c7f536ce77753
134 rdf:rest rdf:nil
135 Nd2daa01a8973488882f0aa571205fde1 schema:isbn 978-3-642-82378-7
136 978-3-642-82380-0
137 schema:name Ultrafast Phenomena IV
138 rdf:type schema:Book
139 Ne47c5290bee9496d98a3605c3968e500 rdf:first sg:person.01104557141.95
140 rdf:rest rdf:nil
141 Nf7f79682a7b041a99e7c7f536ce77753 schema:familyName Eisenthal
142 schema:givenName Kenneth B.
143 rdf:type schema:Person
144 Nff1efec7498b4334af1a8840da475845 schema:name doi
145 schema:value 10.1007/978-3-642-82378-7_8
146 rdf:type schema:PropertyValue
147 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
148 schema:name Physical Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
151 schema:name Optical Physics
152 rdf:type schema:DefinedTerm
153 sg:person.01017237341.68 schema:affiliation grid-institutes:grid.266869.5
154 schema:familyName Vanherzeele
155 schema:givenName H.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017237341.68
157 rdf:type schema:Person
158 sg:person.01031043354.21 schema:affiliation grid-institutes:grid.9613.d
159 schema:familyName Dietel
160 schema:givenName W.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031043354.21
162 rdf:type schema:Person
163 sg:person.010624042460.03 schema:affiliation grid-institutes:grid.9613.d
164 schema:familyName Döpel
165 schema:givenName E.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010624042460.03
167 rdf:type schema:Person
168 sg:person.01104557141.95 schema:affiliation grid-institutes:grid.11843.3f
169 schema:familyName Fontaine
170 schema:givenName J.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104557141.95
172 rdf:type schema:Person
173 sg:person.01174751143.53 schema:affiliation grid-institutes:grid.266869.5
174 schema:familyName Torti
175 schema:givenName R.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174751143.53
177 rdf:type schema:Person
178 sg:person.012246756737.45 schema:affiliation grid-institutes:grid.266869.5
179 schema:familyName Diels
180 schema:givenName J.-C.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246756737.45
182 rdf:type schema:Person
183 sg:person.01354437625.21 schema:affiliation grid-institutes:grid.266869.5
184 schema:familyName Simoni
185 schema:givenName F.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354437625.21
187 rdf:type schema:Person
188 sg:person.013545075673.19 schema:affiliation grid-institutes:grid.9613.d
189 schema:familyName Rudolph
190 schema:givenName W.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545075673.19
192 rdf:type schema:Person
193 sg:person.016251264255.74 schema:affiliation grid-institutes:grid.9613.d
194 schema:familyName Wilhelmi
195 schema:givenName B.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251264255.74
197 rdf:type schema:Person
198 sg:person.07623426413.88 schema:affiliation grid-institutes:grid.266869.5
199 schema:familyName McMichael
200 schema:givenName I. C.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07623426413.88
202 rdf:type schema:Person
203 grid-institutes:grid.11843.3f schema:alternateName GREPA, Université Louis Pasteur, F-67000, Strasbourg, France
204 schema:name GREPA, Université Louis Pasteur, F-67000, Strasbourg, France
205 rdf:type schema:Organization
206 grid-institutes:grid.266869.5 schema:alternateName Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA
207 schema:name Center for Applied Quantum Electronics, Department of Physics, North Texas State University, P.O. Box 5368, 76203, Denton, TX, USA
208 rdf:type schema:Organization
209 grid-institutes:grid.9613.d schema:alternateName Friedrich-Schiller-Universität, DDR-6900, Jena, German Democratic Republic
210 schema:name Friedrich-Schiller-Universität, DDR-6900, Jena, German Democratic Republic
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...