Dynamics of Phase Transitions in Ferromagnetic Domain-Wall Structures View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

E. Magyari , H. Thomas

ABSTRACT

Phase transitions (PT’s) are announced dynamically, by a critical slowing-down phenomenon which manifests itself in general by “softening” of a normal-mode frequency. Thus, bulk PT’s both in lattice dynamics and in magnetism are associated with an extended soft mode (soft phonon and soft magnon, respectively), announcing the transition to a new ground state of the system. Similarly, PT’s in domain walls (DW’s) in lattice-dynamical systems (e.g. in ferroelectrics) are connected with a soft localized mode signalling the transition to a new DW structure. In ferromagnetic systems, however, there occur DW-instabilities which are associated with an essentially different mechanism of critical slowing-down, consisting of a softening of the velocity change induced by a perturbation of the DW structure. In the present lecture, this new dynamical phenomenon is discussed by considering as specific examples the instabilities of 180° and 360° DW’s in biaxial [1, 2] and in planar [3–6] ferromagnets, respectively. In this approach the spins are considered as classical vectors of constant length, and the DW’s are assumed to be long-wavelength nonlinear excitations of the spin field so that the continuum approximation applies. More... »

PAGES

102-108

Book

TITLE

Magnetic Excitations and Fluctuations

ISBN

978-3-642-82371-8
978-3-642-82369-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-82369-5_20

DOI

http://dx.doi.org/10.1007/978-3-642-82369-5_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031412070


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u03b2e 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u03b2e 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magyari", 
        "givenName": "E.", 
        "id": "sg:person.010411043343.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411043343.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u03b2e 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u03b2e 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "H.", 
        "id": "sg:person.0711120037.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "Phase transitions (PT\u2019s) are announced dynamically, by a critical slowing-down phenomenon which manifests itself in general by \u201csoftening\u201d of a normal-mode frequency. Thus, bulk PT\u2019s both in lattice dynamics and in magnetism are associated with an extended soft mode (soft phonon and soft magnon, respectively), announcing the transition to a new ground state of the system. Similarly, PT\u2019s in domain walls (DW\u2019s) in lattice-dynamical systems (e.g. in ferroelectrics) are connected with a soft localized mode signalling the transition to a new DW structure. In ferromagnetic systems, however, there occur DW-instabilities which are associated with an essentially different mechanism of critical slowing-down, consisting of a softening of the velocity change induced by a perturbation of the DW structure. In the present lecture, this new dynamical phenomenon is discussed by considering as specific examples the instabilities of 180\u00b0 and 360\u00b0 DW\u2019s in biaxial [1, 2] and in planar [3\u20136] ferromagnets, respectively. In this approach the spins are considered as classical vectors of constant length, and the DW\u2019s are assumed to be long-wavelength nonlinear excitations of the spin field so that the continuum approximation applies.", 
    "editor": [
      {
        "familyName": "Lovesey", 
        "givenName": "Stephen W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Balucani", 
        "givenName": "Umberto", 
        "type": "Person"
      }, 
      {
        "familyName": "Borsa", 
        "givenName": "Ferdinando", 
        "type": "Person"
      }, 
      {
        "familyName": "Tognetti", 
        "givenName": "Valerio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-82369-5_20", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-82371-8", 
        "978-3-642-82369-5"
      ], 
      "name": "Magnetic Excitations and Fluctuations", 
      "type": "Book"
    }, 
    "keywords": [
      "lattice dynamical systems", 
      "new dynamical phenomena", 
      "critical slowing", 
      "phase transition", 
      "DW structure", 
      "spin fields", 
      "planar ferromagnet", 
      "ferromagnetic systems", 
      "dynamical phenomena", 
      "classical vectors", 
      "nonlinear excitations", 
      "new ground state", 
      "continuum approximation", 
      "normal mode frequencies", 
      "lattice dynamics", 
      "present lecture", 
      "domain wall structure", 
      "ground state", 
      "domain walls", 
      "localized mode", 
      "specific examples", 
      "soft mode", 
      "velocity changes", 
      "dynamics", 
      "ferromagnet", 
      "approximation", 
      "constant length", 
      "magnetism", 
      "spin", 
      "transition", 
      "perturbations", 
      "system", 
      "phenomenon", 
      "structure", 
      "field", 
      "excitation", 
      "bulk Pt", 
      "vector", 
      "instability", 
      "mode", 
      "approach", 
      "slowing", 
      "state", 
      "Pt", 
      "frequency", 
      "length", 
      "softening", 
      "lectures", 
      "wall", 
      "DW", 
      "different mechanisms", 
      "mechanism", 
      "example", 
      "changes"
    ], 
    "name": "Dynamics of Phase Transitions in Ferromagnetic Domain-Wall Structures", 
    "pagination": "102-108", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031412070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-82369-5_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-82369-5_20", 
      "https://app.dimensions.ai/details/publication/pub.1031412070"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_162.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-82369-5_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82369-5_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82369-5_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82369-5_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82369-5_20'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      22 PREDICATES      79 URIs      72 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-82369-5_20 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N6707f6fa74d149158521fb4fd8c43fc5
4 schema:datePublished 1984
5 schema:datePublishedReg 1984-01-01
6 schema:description Phase transitions (PT’s) are announced dynamically, by a critical slowing-down phenomenon which manifests itself in general by “softening” of a normal-mode frequency. Thus, bulk PT’s both in lattice dynamics and in magnetism are associated with an extended soft mode (soft phonon and soft magnon, respectively), announcing the transition to a new ground state of the system. Similarly, PT’s in domain walls (DW’s) in lattice-dynamical systems (e.g. in ferroelectrics) are connected with a soft localized mode signalling the transition to a new DW structure. In ferromagnetic systems, however, there occur DW-instabilities which are associated with an essentially different mechanism of critical slowing-down, consisting of a softening of the velocity change induced by a perturbation of the DW structure. In the present lecture, this new dynamical phenomenon is discussed by considering as specific examples the instabilities of 180° and 360° DW’s in biaxial [1, 2] and in planar [3–6] ferromagnets, respectively. In this approach the spins are considered as classical vectors of constant length, and the DW’s are assumed to be long-wavelength nonlinear excitations of the spin field so that the continuum approximation applies.
7 schema:editor N6433cede0a7c4abaaa3cf43c150e8068
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N347d05b98b6d4e4983e3eb93edfd66d3
11 schema:keywords DW
12 DW structure
13 Pt
14 approach
15 approximation
16 bulk Pt
17 changes
18 classical vectors
19 constant length
20 continuum approximation
21 critical slowing
22 different mechanisms
23 domain wall structure
24 domain walls
25 dynamical phenomena
26 dynamics
27 example
28 excitation
29 ferromagnet
30 ferromagnetic systems
31 field
32 frequency
33 ground state
34 instability
35 lattice dynamical systems
36 lattice dynamics
37 lectures
38 length
39 localized mode
40 magnetism
41 mechanism
42 mode
43 new dynamical phenomena
44 new ground state
45 nonlinear excitations
46 normal mode frequencies
47 perturbations
48 phase transition
49 phenomenon
50 planar ferromagnet
51 present lecture
52 slowing
53 soft mode
54 softening
55 specific examples
56 spin
57 spin fields
58 state
59 structure
60 system
61 transition
62 vector
63 velocity changes
64 wall
65 schema:name Dynamics of Phase Transitions in Ferromagnetic Domain-Wall Structures
66 schema:pagination 102-108
67 schema:productId Nf4ea89d9fd1e45e98ff8dd31387e4bba
68 Nfd46b3d12e414bba8f1874b9ab49d518
69 schema:publisher N2220a61dfcdf4be783319c74c1968bc3
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031412070
71 https://doi.org/10.1007/978-3-642-82369-5_20
72 schema:sdDatePublished 2022-10-01T06:53
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N3b172eeced3d442485be0dc72566f63c
75 schema:url https://doi.org/10.1007/978-3-642-82369-5_20
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N2220a61dfcdf4be783319c74c1968bc3 schema:name Springer Nature
80 rdf:type schema:Organisation
81 N2ebde81384ad44cdb0af37b91b267ffe schema:familyName Borsa
82 schema:givenName Ferdinando
83 rdf:type schema:Person
84 N347d05b98b6d4e4983e3eb93edfd66d3 schema:isbn 978-3-642-82369-5
85 978-3-642-82371-8
86 schema:name Magnetic Excitations and Fluctuations
87 rdf:type schema:Book
88 N3b172eeced3d442485be0dc72566f63c schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N5fe6628d815c4e569afc4bd219e4a65a schema:familyName Lovesey
91 schema:givenName Stephen W.
92 rdf:type schema:Person
93 N6433cede0a7c4abaaa3cf43c150e8068 rdf:first N5fe6628d815c4e569afc4bd219e4a65a
94 rdf:rest Nca8a854011c844cfa0445dffc559051b
95 N6707f6fa74d149158521fb4fd8c43fc5 rdf:first sg:person.010411043343.13
96 rdf:rest N9c3c048a3bb74902942b2eec29d9c195
97 N682a42a385c047c4baa256c7f2c4a6f9 schema:familyName Tognetti
98 schema:givenName Valerio
99 rdf:type schema:Person
100 N9c3c048a3bb74902942b2eec29d9c195 rdf:first sg:person.0711120037.13
101 rdf:rest rdf:nil
102 Na3fce1fdc8de470b8d98bbe9e8e6c8fc rdf:first N682a42a385c047c4baa256c7f2c4a6f9
103 rdf:rest rdf:nil
104 Na5c62a64f1f04ceaa30746ebb6e4eff2 schema:familyName Balucani
105 schema:givenName Umberto
106 rdf:type schema:Person
107 Nca8a854011c844cfa0445dffc559051b rdf:first Na5c62a64f1f04ceaa30746ebb6e4eff2
108 rdf:rest Ndc76664a6e5245e18f2a9651b5a576e9
109 Ndc76664a6e5245e18f2a9651b5a576e9 rdf:first N2ebde81384ad44cdb0af37b91b267ffe
110 rdf:rest Na3fce1fdc8de470b8d98bbe9e8e6c8fc
111 Nf4ea89d9fd1e45e98ff8dd31387e4bba schema:name doi
112 schema:value 10.1007/978-3-642-82369-5_20
113 rdf:type schema:PropertyValue
114 Nfd46b3d12e414bba8f1874b9ab49d518 schema:name dimensions_id
115 schema:value pub.1031412070
116 rdf:type schema:PropertyValue
117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
118 schema:name Engineering
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
121 schema:name Interdisciplinary Engineering
122 rdf:type schema:DefinedTerm
123 sg:person.010411043343.13 schema:affiliation grid-institutes:grid.6612.3
124 schema:familyName Magyari
125 schema:givenName E.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411043343.13
127 rdf:type schema:Person
128 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
129 schema:familyName Thomas
130 schema:givenName H.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
132 rdf:type schema:Person
133 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik, Universität Basel, Klingelbergstraβe 82, CH-4056, Basel, Switzerland
134 schema:name Institut für Physik, Universität Basel, Klingelbergstraβe 82, CH-4056, Basel, Switzerland
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...