Acoustic Absorption Due to Hydrogen Tunneling in NbN0.0015H0.0025 View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

J. L. Wang , G. Weiss , H. Wipf , A. Magerl

ABSTRACT

Some years ago it was found that doping of niobium with hydrogen gives rise to excess specific heat around and below 1 K [1]. At corresponding temperatures the thermal phonon mean free path was reduced by an order of magnitude. This has been interpreted as resonant scattering of thermal phonons by the discrete set of energy levels associated with interstitial motion of H or D atoms [2]. Meanwhile it could be demonstrated that these thermal anomalies induced by hydrogen are strongly intensified by the additional presence of N interstitials [3,4]. N (or 0) impurities act as trapping centers, and at low temperatures the hydrogen is still able to tunnel between adjacent interstitial sites around the trapping atoms. This tunneling has directly been observed in inelastic neutron scattering experiments on Nb doped with 0 and H [5]. More... »

PAGES

401-403

Book

TITLE

Phonon Scattering in Condensed Matter

ISBN

978-3-642-82165-3
978-3-642-82163-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-82163-9_98

DOI

http://dx.doi.org/10.1007/978-3-642-82163-9_98

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035557207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Pohl Institute, Tongji University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "J. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heidelberg University", 
          "id": "https://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Institut f\u00fcr Angewandte Physik II, Universit\u00e4t Heidelberg, Albert-\u00dcberle-Stra\u00dfe 3-5, D-6900\u00a0Heidelberg, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "G.", 
        "id": "sg:person.015642655021.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015642655021.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik-Department E19, Technische Universit\u00e4t M\u00fcnchen, D-8000\u00a0M\u00fcnchen, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wipf", 
        "givenName": "H.", 
        "id": "sg:person.07553115345.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553115345.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Laue-Langevin", 
          "id": "https://www.grid.ac/institutes/grid.156520.5", 
          "name": [
            "Institut Laue-Langevin, F-38042\u00a0Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magerl", 
        "givenName": "A.", 
        "id": "sg:person.01120550476.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120550476.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0038-1098(82)90077-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039173486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(82)90077-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039173486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/zpch.1979.116.116.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048541682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.10.2771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060518862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.10.2771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060518862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.10.2777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060518863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.10.2777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060518863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.46.947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.46.947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786343"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "Some years ago it was found that doping of niobium with hydrogen gives rise to excess specific heat around and below 1 K [1]. At corresponding temperatures the thermal phonon mean free path was reduced by an order of magnitude. This has been interpreted as resonant scattering of thermal phonons by the discrete set of energy levels associated with interstitial motion of H or D atoms [2]. Meanwhile it could be demonstrated that these thermal anomalies induced by hydrogen are strongly intensified by the additional presence of N interstitials [3,4]. N (or 0) impurities act as trapping centers, and at low temperatures the hydrogen is still able to tunnel between adjacent interstitial sites around the trapping atoms. This tunneling has directly been observed in inelastic neutron scattering experiments on Nb doped with 0 and H [5].", 
    "editor": [
      {
        "familyName": "Eisenmenger", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }, 
      {
        "familyName": "La\u00dfmann", 
        "givenName": "Kurt", 
        "type": "Person"
      }, 
      {
        "familyName": "D\u00f6ttinger", 
        "givenName": "Siegfried", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-82163-9_98", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-82165-3", 
        "978-3-642-82163-9"
      ], 
      "name": "Phonon Scattering in Condensed Matter", 
      "type": "Book"
    }, 
    "name": "Acoustic Absorption Due to Hydrogen Tunneling in NbN0.0015H0.0025", 
    "pagination": "401-403", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-82163-9_98"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a9611cc854030a104eec86c1665e0349e68cfcacc5517385ddeef4810d12d055"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035557207"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-82163-9_98", 
      "https://app.dimensions.ai/details/publication/pub.1035557207"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000265.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-82163-9_98"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82163-9_98'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82163-9_98'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82163-9_98'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-82163-9_98'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-82163-9_98 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N69a35a25451d42589281f250643a31e3
4 schema:citation https://doi.org/10.1016/0038-1098(82)90077-1
5 https://doi.org/10.1103/physrevb.10.2771
6 https://doi.org/10.1103/physrevb.10.2777
7 https://doi.org/10.1103/physrevlett.40.947
8 https://doi.org/10.1103/physrevlett.43.453
9 https://doi.org/10.1103/physrevlett.46.947
10 https://doi.org/10.1524/zpch.1979.116.116.039
11 schema:datePublished 1984
12 schema:datePublishedReg 1984-01-01
13 schema:description Some years ago it was found that doping of niobium with hydrogen gives rise to excess specific heat around and below 1 K [1]. At corresponding temperatures the thermal phonon mean free path was reduced by an order of magnitude. This has been interpreted as resonant scattering of thermal phonons by the discrete set of energy levels associated with interstitial motion of H or D atoms [2]. Meanwhile it could be demonstrated that these thermal anomalies induced by hydrogen are strongly intensified by the additional presence of N interstitials [3,4]. N (or 0) impurities act as trapping centers, and at low temperatures the hydrogen is still able to tunnel between adjacent interstitial sites around the trapping atoms. This tunneling has directly been observed in inelastic neutron scattering experiments on Nb doped with 0 and H [5].
14 schema:editor Nc5e4525303f14f839236bfc4ca37e9ed
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N653b9b842a02468197fc922c84cacf85
19 schema:name Acoustic Absorption Due to Hydrogen Tunneling in NbN0.0015H0.0025
20 schema:pagination 401-403
21 schema:productId N5a5d254996b447b39afb2572f490c0ad
22 N9ec95505c8a148378b13b842fc6bd773
23 Ncba2867c87d84acd9e56093677d71eca
24 schema:publisher N90c4e9d28c9447a18bcd19b529f1e137
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035557207
26 https://doi.org/10.1007/978-3-642-82163-9_98
27 schema:sdDatePublished 2019-04-15T21:03
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N45d1cff2190649f1bd9fa5dc242479af
30 schema:url http://link.springer.com/10.1007/978-3-642-82163-9_98
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N05811415f571455abd625455cc1dddbd schema:familyName Laßmann
35 schema:givenName Kurt
36 rdf:type schema:Person
37 N18b2c6e1f9aa4674ad75a44f1a8b2610 rdf:first sg:person.01120550476.01
38 rdf:rest rdf:nil
39 N25c502253ea74f2089c43aea90326ee4 rdf:first sg:person.07553115345.63
40 rdf:rest N18b2c6e1f9aa4674ad75a44f1a8b2610
41 N3839562c27574e078a9ee80ef90e8939 rdf:first N05811415f571455abd625455cc1dddbd
42 rdf:rest N73b83d9e97cd4269b505887ffeb2e853
43 N45d1cff2190649f1bd9fa5dc242479af schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N4d0b0644467448a2b8ed2e35a4737551 schema:familyName Eisenmenger
46 schema:givenName Wolfgang
47 rdf:type schema:Person
48 N5a5d254996b447b39afb2572f490c0ad schema:name readcube_id
49 schema:value a9611cc854030a104eec86c1665e0349e68cfcacc5517385ddeef4810d12d055
50 rdf:type schema:PropertyValue
51 N653b9b842a02468197fc922c84cacf85 schema:isbn 978-3-642-82163-9
52 978-3-642-82165-3
53 schema:name Phonon Scattering in Condensed Matter
54 rdf:type schema:Book
55 N69a35a25451d42589281f250643a31e3 rdf:first N7311924c3b1a4c728e596d85d1fe9610
56 rdf:rest N9a36b993ee414d6db675f298ed2c0f93
57 N7311924c3b1a4c728e596d85d1fe9610 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
58 schema:familyName Wang
59 schema:givenName J. L.
60 rdf:type schema:Person
61 N73b83d9e97cd4269b505887ffeb2e853 rdf:first N76ae9244aa3542b39a57632809962245
62 rdf:rest rdf:nil
63 N76ae9244aa3542b39a57632809962245 schema:familyName Döttinger
64 schema:givenName Siegfried
65 rdf:type schema:Person
66 N90c4e9d28c9447a18bcd19b529f1e137 schema:location Berlin, Heidelberg
67 schema:name Springer Berlin Heidelberg
68 rdf:type schema:Organisation
69 N9a36b993ee414d6db675f298ed2c0f93 rdf:first sg:person.015642655021.98
70 rdf:rest N25c502253ea74f2089c43aea90326ee4
71 N9ec95505c8a148378b13b842fc6bd773 schema:name doi
72 schema:value 10.1007/978-3-642-82163-9_98
73 rdf:type schema:PropertyValue
74 Nc5e4525303f14f839236bfc4ca37e9ed rdf:first N4d0b0644467448a2b8ed2e35a4737551
75 rdf:rest N3839562c27574e078a9ee80ef90e8939
76 Ncba2867c87d84acd9e56093677d71eca schema:name dimensions_id
77 schema:value pub.1035557207
78 rdf:type schema:PropertyValue
79 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
80 schema:name Physical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
83 schema:name Other Physical Sciences
84 rdf:type schema:DefinedTerm
85 sg:person.01120550476.01 schema:affiliation https://www.grid.ac/institutes/grid.156520.5
86 schema:familyName Magerl
87 schema:givenName A.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120550476.01
89 rdf:type schema:Person
90 sg:person.015642655021.98 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
91 schema:familyName Weiss
92 schema:givenName G.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015642655021.98
94 rdf:type schema:Person
95 sg:person.07553115345.63 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
96 schema:familyName Wipf
97 schema:givenName H.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553115345.63
99 rdf:type schema:Person
100 https://doi.org/10.1016/0038-1098(82)90077-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039173486
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevb.10.2771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060518862
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevb.10.2777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060518863
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.40.947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782865
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrevlett.43.453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784460
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevlett.46.947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786343
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1524/zpch.1979.116.116.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048541682
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.156520.5 schema:alternateName Institut Laue-Langevin
115 schema:name Institut Laue-Langevin, F-38042 Grenoble, France
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
118 schema:name Pohl Institute, Tongji University, Shanghai, China
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
121 schema:name Physik-Department E19, Technische Universität München, D-8000 München, Fed. Rep. of Germany
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.7700.0 schema:alternateName Heidelberg University
124 schema:name Institut für Angewandte Physik II, Universität Heidelberg, Albert-Überle-Straße 3-5, D-6900 Heidelberg, Fed. Rep. of Germany
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...