The Phenomenological Renormalization Method View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1981

AUTHORS

B. Derrida , J. Vannimenus

ABSTRACT

One aim of the study of critical phenomena is the calculation of the exponents which describe the singularities of the thermodynamic functions at a second order phase transition point. Most of the models of statistical mechanics are not solvable exactly, therefore these exponents are only known approximatively. The three main approaches which allow to calculate the critical exponents are the series expansions, the Monte Carlo methods and the renormalization group theories. The phenomenological renormalization method which was introduced by NIGHTINGALE [1] is a real space renormalization method. The philosophy of the method is to use the fact that one can calculate exactly the thermodynamic properties of one dimensional systems and then from this information obtain the critical properties of systems in higher dimension. Its main advantages are: More... »

PAGES

153-158

Book

TITLE

Numerical Methods in the Study of Critical Phenomena

ISBN

978-3-642-81705-2
978-3-642-81703-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-81703-8_19

DOI

http://dx.doi.org/10.1007/978-3-642-81703-8_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029916502


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CEA Saclay", 
          "id": "https://www.grid.ac/institutes/grid.457334.2", 
          "name": [
            "Service de Physique Th\u00e9orique, CEN Saclay, B.P. Nr. 2, F-91190\u00a0Gif sur Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derrida", 
        "givenName": "B.", 
        "id": "sg:person.0766735742.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766735742.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique de l\u2019Ecole Normale Sup\u00e9rieure, 24, Rue Lhomond, F-75231\u00a0Paris C\u00e9dex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vannimenus", 
        "givenName": "J.", 
        "id": "sg:person.013547732523.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013547732523.78"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1981", 
    "datePublishedReg": "1981-01-01", 
    "description": "One aim of the study of critical phenomena is the calculation of the exponents which describe the singularities of the thermodynamic functions at a second order phase transition point. Most of the models of statistical mechanics are not solvable exactly, therefore these exponents are only known approximatively. The three main approaches which allow to calculate the critical exponents are the series expansions, the Monte Carlo methods and the renormalization group theories. The phenomenological renormalization method which was introduced by NIGHTINGALE [1] is a real space renormalization method. The philosophy of the method is to use the fact that one can calculate exactly the thermodynamic properties of one dimensional systems and then from this information obtain the critical properties of systems in higher dimension. Its main advantages are:", 
    "editor": [
      {
        "familyName": "Della Dora", 
        "givenName": "Jean", 
        "type": "Person"
      }, 
      {
        "familyName": "Demongeot", 
        "givenName": "Jacques", 
        "type": "Person"
      }, 
      {
        "familyName": "Lacolle", 
        "givenName": "Bernard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-81703-8_19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-81705-2", 
        "978-3-642-81703-8"
      ], 
      "name": "Numerical Methods in the Study of Critical Phenomena", 
      "type": "Book"
    }, 
    "name": "The Phenomenological Renormalization Method", 
    "pagination": "153-158", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-81703-8_19"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e84f326f486755ae101e8c15284bfab7aedcdb4ccbd6ab67420d3f6d1fd4cfa"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029916502"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-81703-8_19", 
      "https://app.dimensions.ai/details/publication/pub.1029916502"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000051.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-81703-8_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-81703-8_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-81703-8_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-81703-8_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-81703-8_19'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-81703-8_19 schema:about anzsrc-for:01
2 anzsrc-for:0105
3 schema:author N5036ed57a402477b85bb4720ca76722c
4 schema:datePublished 1981
5 schema:datePublishedReg 1981-01-01
6 schema:description One aim of the study of critical phenomena is the calculation of the exponents which describe the singularities of the thermodynamic functions at a second order phase transition point. Most of the models of statistical mechanics are not solvable exactly, therefore these exponents are only known approximatively. The three main approaches which allow to calculate the critical exponents are the series expansions, the Monte Carlo methods and the renormalization group theories. The phenomenological renormalization method which was introduced by NIGHTINGALE [1] is a real space renormalization method. The philosophy of the method is to use the fact that one can calculate exactly the thermodynamic properties of one dimensional systems and then from this information obtain the critical properties of systems in higher dimension. Its main advantages are:
7 schema:editor N99d79c201ac2428b9fa798ebdebc01e6
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N046864b2683b44b597132ff0be431407
12 schema:name The Phenomenological Renormalization Method
13 schema:pagination 153-158
14 schema:productId N3332fd39be6945d2acc8d38ba8f4ba65
15 N898b08ff47494ccab302c8a0664a3c3f
16 Nfa3816499bad4cb09fe5ad18cb1f522a
17 schema:publisher Nc244b2961e4c4369908a245a886595e2
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029916502
19 https://doi.org/10.1007/978-3-642-81703-8_19
20 schema:sdDatePublished 2019-04-15T17:58
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N109a5bb34e6648ca8472bb60f3b9cf90
23 schema:url http://link.springer.com/10.1007/978-3-642-81703-8_19
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N046864b2683b44b597132ff0be431407 schema:isbn 978-3-642-81703-8
28 978-3-642-81705-2
29 schema:name Numerical Methods in the Study of Critical Phenomena
30 rdf:type schema:Book
31 N109a5bb34e6648ca8472bb60f3b9cf90 schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 N2e8adb016e254a61a7b1085acf1e1c05 schema:familyName Della Dora
34 schema:givenName Jean
35 rdf:type schema:Person
36 N3305992fa6e14435a2a78788ea6728fe schema:name Laboratoire de Physique de l’Ecole Normale Supérieure, 24, Rue Lhomond, F-75231 Paris Cédex 05, France
37 rdf:type schema:Organization
38 N3332fd39be6945d2acc8d38ba8f4ba65 schema:name dimensions_id
39 schema:value pub.1029916502
40 rdf:type schema:PropertyValue
41 N428feb78943a4325b821c404d781781d schema:familyName Demongeot
42 schema:givenName Jacques
43 rdf:type schema:Person
44 N4585fee845f341b48d6c768aa89ea878 schema:familyName Lacolle
45 schema:givenName Bernard
46 rdf:type schema:Person
47 N5036ed57a402477b85bb4720ca76722c rdf:first sg:person.0766735742.49
48 rdf:rest N605ff4fd852e4b869d9410e8172edab2
49 N605ff4fd852e4b869d9410e8172edab2 rdf:first sg:person.013547732523.78
50 rdf:rest rdf:nil
51 N898b08ff47494ccab302c8a0664a3c3f schema:name doi
52 schema:value 10.1007/978-3-642-81703-8_19
53 rdf:type schema:PropertyValue
54 N99d79c201ac2428b9fa798ebdebc01e6 rdf:first N2e8adb016e254a61a7b1085acf1e1c05
55 rdf:rest Na8f54716f620473abe52a013cec08523
56 Na8f54716f620473abe52a013cec08523 rdf:first N428feb78943a4325b821c404d781781d
57 rdf:rest Nb55d6e8f6a564b83bc50d8cd701436ab
58 Nb55d6e8f6a564b83bc50d8cd701436ab rdf:first N4585fee845f341b48d6c768aa89ea878
59 rdf:rest rdf:nil
60 Nc244b2961e4c4369908a245a886595e2 schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 Nfa3816499bad4cb09fe5ad18cb1f522a schema:name readcube_id
64 schema:value 8e84f326f486755ae101e8c15284bfab7aedcdb4ccbd6ab67420d3f6d1fd4cfa
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Physics
71 rdf:type schema:DefinedTerm
72 sg:person.013547732523.78 schema:affiliation N3305992fa6e14435a2a78788ea6728fe
73 schema:familyName Vannimenus
74 schema:givenName J.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013547732523.78
76 rdf:type schema:Person
77 sg:person.0766735742.49 schema:affiliation https://www.grid.ac/institutes/grid.457334.2
78 schema:familyName Derrida
79 schema:givenName B.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766735742.49
81 rdf:type schema:Person
82 https://www.grid.ac/institutes/grid.457334.2 schema:alternateName CEA Saclay
83 schema:name Service de Physique Théorique, CEN Saclay, B.P. Nr. 2, F-91190 Gif sur Yvette, France
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...