Stability of Nonuniform States in Systems Exhibiting Continuous Bifurcation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1978

AUTHORS

M. Büttiker , H. Thomas

ABSTRACT

Many systems which are driven away from equilibrium by pumping or forcing show an instability of a stationary uniform state to a new stationary or travelling-wave state with broken translational symmetry. In continuous systems the loss of stability of the uniform state, which is usually associated with a destabilization of a normal mode, gives rise to a bifurcation of a whole manifold of new solutions. The task is then to select the members of this manifold according to their stability properties, and thus to find the candidates which may be physically realised. The travelling-wave case can be reduced to the stationary case by a transformation to a moving frame. In this paper, we therefore focus attention to stationary states. More... »

PAGES

321-325

Book

TITLE

Solitons and Condensed Matter Physics

ISBN

978-3-642-81293-4
978-3-642-81291-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-81291-0_35

DOI

http://dx.doi.org/10.1007/978-3-642-81291-0_35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016879167


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u00dfe 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u00dfe 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00fcttiker", 
        "givenName": "M.", 
        "id": "sg:person.01246372247.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246372247.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u00dfe 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u00dfe 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "H.", 
        "id": "sg:person.0711120037.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1978", 
    "datePublishedReg": "1978-01-01", 
    "description": "Many systems which are driven away from equilibrium by pumping or forcing show an instability of a stationary uniform state to a new stationary or travelling-wave state with broken translational symmetry. In continuous systems the loss of stability of the uniform state, which is usually associated with a destabilization of a normal mode, gives rise to a bifurcation of a whole manifold of new solutions. The task is then to select the members of this manifold according to their stability properties, and thus to find the candidates which may be physically realised. The travelling-wave case can be reduced to the stationary case by a transformation to a moving frame. In this paper, we therefore focus attention to stationary states.", 
    "editor": [
      {
        "familyName": "Bishop", 
        "givenName": "Alan R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Schneider", 
        "givenName": "Toni", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-81291-0_35", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-81293-4", 
        "978-3-642-81291-0"
      ], 
      "name": "Solitons and Condensed Matter Physics", 
      "type": "Book"
    }, 
    "keywords": [
      "loss of stability", 
      "traveling-wave state", 
      "continuous system", 
      "continuous bifurcation", 
      "uniform state", 
      "translational symmetry", 
      "stationary case", 
      "stationary state", 
      "nonuniform state", 
      "stability", 
      "new solutions", 
      "stability properties", 
      "normal modes", 
      "system", 
      "state", 
      "mode", 
      "properties", 
      "instability", 
      "symmetry", 
      "whole manifold", 
      "solution", 
      "bifurcation", 
      "frame", 
      "equilibrium", 
      "show", 
      "loss", 
      "manifold", 
      "candidates", 
      "transformation", 
      "cases", 
      "destabilization", 
      "attention", 
      "task", 
      "paper", 
      "members"
    ], 
    "name": "Stability of Nonuniform States in Systems Exhibiting Continuous Bifurcation", 
    "pagination": "321-325", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016879167"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-81291-0_35"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-81291-0_35", 
      "https://app.dimensions.ai/details/publication/pub.1016879167"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_204.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-81291-0_35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-81291-0_35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-81291-0_35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-81291-0_35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-81291-0_35'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      22 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-81291-0_35 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ncfdf8f84f4cd42e797c4f6a5fd2d425a
4 schema:datePublished 1978
5 schema:datePublishedReg 1978-01-01
6 schema:description Many systems which are driven away from equilibrium by pumping or forcing show an instability of a stationary uniform state to a new stationary or travelling-wave state with broken translational symmetry. In continuous systems the loss of stability of the uniform state, which is usually associated with a destabilization of a normal mode, gives rise to a bifurcation of a whole manifold of new solutions. The task is then to select the members of this manifold according to their stability properties, and thus to find the candidates which may be physically realised. The travelling-wave case can be reduced to the stationary case by a transformation to a moving frame. In this paper, we therefore focus attention to stationary states.
7 schema:editor N2786508c81c041ac8e196a038fcbad39
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N938763c22278432296c55319af434135
11 schema:keywords attention
12 bifurcation
13 candidates
14 cases
15 continuous bifurcation
16 continuous system
17 destabilization
18 equilibrium
19 frame
20 instability
21 loss
22 loss of stability
23 manifold
24 members
25 mode
26 new solutions
27 nonuniform state
28 normal modes
29 paper
30 properties
31 show
32 solution
33 stability
34 stability properties
35 state
36 stationary case
37 stationary state
38 symmetry
39 system
40 task
41 transformation
42 translational symmetry
43 traveling-wave state
44 uniform state
45 whole manifold
46 schema:name Stability of Nonuniform States in Systems Exhibiting Continuous Bifurcation
47 schema:pagination 321-325
48 schema:productId N2cc03b5cefab45d1924f072d43512468
49 N348359aee3dd4ee69f8a2cd5a86a60b8
50 schema:publisher N98a8c0487a474f3b92a212abc339aeed
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016879167
52 https://doi.org/10.1007/978-3-642-81291-0_35
53 schema:sdDatePublished 2022-12-01T06:48
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N1686764bd5e640d38d231232cc56a15e
56 schema:url https://doi.org/10.1007/978-3-642-81291-0_35
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N0d3aab2c2fe8468ba640dd19dd2793cb rdf:first N8c4dfb9b5d0140a7b4bb652ac220c855
61 rdf:rest rdf:nil
62 N1686764bd5e640d38d231232cc56a15e schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N2786508c81c041ac8e196a038fcbad39 rdf:first Nd6e5a7d5b50a448e9b91c949cc842ef1
65 rdf:rest N0d3aab2c2fe8468ba640dd19dd2793cb
66 N2cc03b5cefab45d1924f072d43512468 schema:name dimensions_id
67 schema:value pub.1016879167
68 rdf:type schema:PropertyValue
69 N348359aee3dd4ee69f8a2cd5a86a60b8 schema:name doi
70 schema:value 10.1007/978-3-642-81291-0_35
71 rdf:type schema:PropertyValue
72 N8c4dfb9b5d0140a7b4bb652ac220c855 schema:familyName Schneider
73 schema:givenName Toni
74 rdf:type schema:Person
75 N938763c22278432296c55319af434135 schema:isbn 978-3-642-81291-0
76 978-3-642-81293-4
77 schema:name Solitons and Condensed Matter Physics
78 rdf:type schema:Book
79 N98a8c0487a474f3b92a212abc339aeed schema:name Springer Nature
80 rdf:type schema:Organisation
81 Nb6ad58b7738b47b19d1740dc19e978a3 rdf:first sg:person.0711120037.13
82 rdf:rest rdf:nil
83 Ncfdf8f84f4cd42e797c4f6a5fd2d425a rdf:first sg:person.01246372247.07
84 rdf:rest Nb6ad58b7738b47b19d1740dc19e978a3
85 Nd6e5a7d5b50a448e9b91c949cc842ef1 schema:familyName Bishop
86 schema:givenName Alan R.
87 rdf:type schema:Person
88 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
89 schema:name Chemical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Chemistry (incl. Structural)
93 rdf:type schema:DefinedTerm
94 sg:person.01246372247.07 schema:affiliation grid-institutes:grid.6612.3
95 schema:familyName Büttiker
96 schema:givenName M.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246372247.07
98 rdf:type schema:Person
99 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
100 schema:familyName Thomas
101 schema:givenName H.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
103 rdf:type schema:Person
104 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik, Universität Basel, Klingelbergstraße 82, CH-4056, Basel, Switzerland
105 schema:name Institut für Physik, Universität Basel, Klingelbergstraße 82, CH-4056, Basel, Switzerland
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...