Functions of SH2 and SH3 Domains View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

B. J. Mayer , R. Gupta

ABSTRACT

Cells have a remarkable ability to extract information from the extracellular environment and to respond by altering their transcriptional and replication programs, metabolism, shape, and many other aspects of their behavior. The transduction of extracellular signals is particularly crucial in multicellular organisms, where development and adult life requires that each cell precisely adjust its activities to conform to the needs of the whole organism. From an engineering standpoint the mechanisms used to transduce signals must be combinatorial in nature, because the limited number of total gene products implies that the transducers for each specific signal in each specific cell type cannot be unique. Our current understanding suggests that many types of extracellular signals are transduced by a relatively small number of enzymes including tyrosine kinases, GTP-binding proteins, and serine/threonine kinases, and that specificity of signaling arises through the assembly of multiprotein complexes involving such signaling proteins. More... »

PAGES

1-22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-80481-6_1

DOI

http://dx.doi.org/10.1007/978-3-642-80481-6_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017104808

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9401200


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptor Proteins, Signal Transducing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "GRB2 Adaptor Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ligands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "src Homology Domains", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Howard Hughes Medical Institute, Children\u2019s Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, 320 Longwood Avenue, 02115, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Howard Hughes Medical Institute, Children\u2019s Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, 320 Longwood Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mayer", 
        "givenName": "B. J.", 
        "id": "sg:person.01244537451.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244537451.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Howard Hughes Medical Institute, Children\u2019s Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, 320 Longwood Avenue, 02115, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Howard Hughes Medical Institute, Children\u2019s Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, 320 Longwood Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "R.", 
        "id": "sg:person.01316003637.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316003637.45"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "Cells have a remarkable ability to extract information from the extracellular environment and to respond by altering their transcriptional and replication programs, metabolism, shape, and many other aspects of their behavior. The transduction of extracellular signals is particularly crucial in multicellular organisms, where development and adult life requires that each cell precisely adjust its activities to conform to the needs of the whole organism. From an engineering standpoint the mechanisms used to transduce signals must be combinatorial in nature, because the limited number of total gene products implies that the transducers for each specific signal in each specific cell type cannot be unique. Our current understanding suggests that many types of extracellular signals are transduced by a relatively small number of enzymes including tyrosine kinases, GTP-binding proteins, and serine/threonine kinases, and that specificity of signaling arises through the assembly of multiprotein complexes involving such signaling proteins.", 
    "editor": [
      {
        "familyName": "Pawson", 
        "givenName": "Anthony J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-80481-6_1", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-80483-0", 
        "978-3-642-80481-6"
      ], 
      "name": "Protein Modules in Signal Transduction", 
      "type": "Book"
    }, 
    "keywords": [
      "extracellular signals", 
      "serine/threonine kinase", 
      "specific cell types", 
      "multicellular organisms", 
      "replication program", 
      "multiprotein complexes", 
      "threonine kinase", 
      "SH3 domain", 
      "gene products", 
      "extracellular environment", 
      "whole organism", 
      "tyrosine kinase", 
      "cell types", 
      "specific signals", 
      "kinase", 
      "current understanding", 
      "organisms", 
      "remarkable ability", 
      "protein", 
      "cells", 
      "SH2", 
      "transduction", 
      "GTP", 
      "adult life", 
      "enzyme", 
      "metabolism", 
      "assembly", 
      "limited number", 
      "signals", 
      "complexes", 
      "domain", 
      "small number", 
      "mechanism", 
      "specificity", 
      "activity", 
      "function", 
      "number", 
      "transducer", 
      "types", 
      "understanding", 
      "ability", 
      "development", 
      "environment", 
      "products", 
      "aspects", 
      "nature", 
      "information", 
      "arises", 
      "shape", 
      "program", 
      "behavior", 
      "life", 
      "engineering standpoint", 
      "need", 
      "standpoint"
    ], 
    "name": "Functions of SH2 and SH3 Domains", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017104808"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-80481-6_1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9401200"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-80481-6_1", 
      "https://app.dimensions.ai/details/publication/pub.1017104808"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_51.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-80481-6_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80481-6_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80481-6_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80481-6_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80481-6_1'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      22 PREDICATES      88 URIs      81 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-80481-6_1 schema:about N1ed3b377e6394fafb54b0f949d77b978
2 N3b39d20aed454840a5004acdc45a2b54
3 N81cdb0987e2f43f8a39a344482d93bcc
4 N908b1a88b2e043febef8429052c7651a
5 Nac0fb5b8510f46f48211bf397833fae6
6 Ne40e952900d2432f9efd257280d2fed5
7 Ne740fc281d944265b7fc9498428964e5
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author N2f9c25892e40491180fb93e71ca408fd
11 schema:datePublished 1998
12 schema:datePublishedReg 1998-01-01
13 schema:description Cells have a remarkable ability to extract information from the extracellular environment and to respond by altering their transcriptional and replication programs, metabolism, shape, and many other aspects of their behavior. The transduction of extracellular signals is particularly crucial in multicellular organisms, where development and adult life requires that each cell precisely adjust its activities to conform to the needs of the whole organism. From an engineering standpoint the mechanisms used to transduce signals must be combinatorial in nature, because the limited number of total gene products implies that the transducers for each specific signal in each specific cell type cannot be unique. Our current understanding suggests that many types of extracellular signals are transduced by a relatively small number of enzymes including tyrosine kinases, GTP-binding proteins, and serine/threonine kinases, and that specificity of signaling arises through the assembly of multiprotein complexes involving such signaling proteins.
14 schema:editor Naf27dee14d6047d1868ea71e171675e5
15 schema:genre chapter
16 schema:isAccessibleForFree false
17 schema:isPartOf Ncf100634eb204874a282ec5810351f2b
18 schema:keywords GTP
19 SH2
20 SH3 domain
21 ability
22 activity
23 adult life
24 arises
25 aspects
26 assembly
27 behavior
28 cell types
29 cells
30 complexes
31 current understanding
32 development
33 domain
34 engineering standpoint
35 environment
36 enzyme
37 extracellular environment
38 extracellular signals
39 function
40 gene products
41 information
42 kinase
43 life
44 limited number
45 mechanism
46 metabolism
47 multicellular organisms
48 multiprotein complexes
49 nature
50 need
51 number
52 organisms
53 products
54 program
55 protein
56 remarkable ability
57 replication program
58 serine/threonine kinase
59 shape
60 signals
61 small number
62 specific cell types
63 specific signals
64 specificity
65 standpoint
66 threonine kinase
67 transducer
68 transduction
69 types
70 tyrosine kinase
71 understanding
72 whole organism
73 schema:name Functions of SH2 and SH3 Domains
74 schema:pagination 1-22
75 schema:productId N4d8c9a9cf07c42029c376625e9029936
76 N8c2e85ed24214f488d8686af455294f2
77 Nf14bf278ea4c46c2b56ccb02de17d23e
78 schema:publisher Nd02e2aa27cfa4f4a809392a86543c705
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017104808
80 https://doi.org/10.1007/978-3-642-80481-6_1
81 schema:sdDatePublished 2022-09-02T16:18
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N13afbe961ced43f98a34c83d432c91dd
84 schema:url https://doi.org/10.1007/978-3-642-80481-6_1
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N13afbe961ced43f98a34c83d432c91dd schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N1ed3b377e6394fafb54b0f949d77b978 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Adaptor Proteins, Signal Transducing
92 rdf:type schema:DefinedTerm
93 N1fa12dc1ae6e484284822d1de238a5b7 schema:familyName Pawson
94 schema:givenName Anthony J.
95 rdf:type schema:Person
96 N2f9c25892e40491180fb93e71ca408fd rdf:first sg:person.01244537451.59
97 rdf:rest N96dca90622554813a3a110fcef383ff7
98 N3b39d20aed454840a5004acdc45a2b54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Proteins
100 rdf:type schema:DefinedTerm
101 N4d8c9a9cf07c42029c376625e9029936 schema:name doi
102 schema:value 10.1007/978-3-642-80481-6_1
103 rdf:type schema:PropertyValue
104 N81cdb0987e2f43f8a39a344482d93bcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Ligands
106 rdf:type schema:DefinedTerm
107 N8c2e85ed24214f488d8686af455294f2 schema:name pubmed_id
108 schema:value 9401200
109 rdf:type schema:PropertyValue
110 N908b1a88b2e043febef8429052c7651a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Humans
112 rdf:type schema:DefinedTerm
113 N96dca90622554813a3a110fcef383ff7 rdf:first sg:person.01316003637.45
114 rdf:rest rdf:nil
115 Nac0fb5b8510f46f48211bf397833fae6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name src Homology Domains
117 rdf:type schema:DefinedTerm
118 Naf27dee14d6047d1868ea71e171675e5 rdf:first N1fa12dc1ae6e484284822d1de238a5b7
119 rdf:rest rdf:nil
120 Ncf100634eb204874a282ec5810351f2b schema:isbn 978-3-642-80481-6
121 978-3-642-80483-0
122 schema:name Protein Modules in Signal Transduction
123 rdf:type schema:Book
124 Nd02e2aa27cfa4f4a809392a86543c705 schema:name Springer Nature
125 rdf:type schema:Organisation
126 Ne40e952900d2432f9efd257280d2fed5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name GRB2 Adaptor Protein
128 rdf:type schema:DefinedTerm
129 Ne740fc281d944265b7fc9498428964e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Animals
131 rdf:type schema:DefinedTerm
132 Nf14bf278ea4c46c2b56ccb02de17d23e schema:name dimensions_id
133 schema:value pub.1017104808
134 rdf:type schema:PropertyValue
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
139 schema:name Biochemistry and Cell Biology
140 rdf:type schema:DefinedTerm
141 sg:person.01244537451.59 schema:affiliation grid-institutes:grid.38142.3c
142 schema:familyName Mayer
143 schema:givenName B. J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244537451.59
145 rdf:type schema:Person
146 sg:person.01316003637.45 schema:affiliation grid-institutes:grid.38142.3c
147 schema:familyName Gupta
148 schema:givenName R.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316003637.45
150 rdf:type schema:Person
151 grid-institutes:grid.38142.3c schema:alternateName Howard Hughes Medical Institute, Children’s Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, 320 Longwood Avenue, 02115, Boston, MA, USA
152 schema:name Howard Hughes Medical Institute, Children’s Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, 320 Longwood Avenue, 02115, Boston, MA, USA
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...