Ontology type: schema:Chapter
1998
AUTHORSJ. Y. Wu , J. M. She , X. N. Cai , Y. P. S. Bajaj
ABSTRACTFor the induction of genetic variability and genetic manipulation studies, it is essential that the cells in culture develop into complete plants. In cotton, callus capable of differentiation has been established in a number of wild and cultivated species of Gossypium. There are two modes of differentiation, i.e., organogenesis through bud formation and somatic embryogenesis, the latter being more prevalent. Recently, numerous publications have appeared on the induction of somatic embryogenesis in cotton, and the subject reviewed (Gawel and Robacker 1995). Plants regenerated from callus derived from segments of hypocotyl and leaf, and isolated protoplasts transferred to pots/ field matured, and some of them bloomed and set bolls (Shoemaker et al. 1986; Stelly et al. 1989; Zhang et al. 1994). In this chapter, our work on the establishment of callus, induction of somatic embryogenesis, and plant regeneration in various species of Gossypium is discussed. More... »
PAGES37-47
Cotton
ISBN
978-3-642-80375-8
978-3-642-80373-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-80373-4_2
DOIhttp://dx.doi.org/10.1007/978-3-642-80373-4_2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017093695
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Agrobiological Genetics and Physiology, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu Province, China",
"id": "http://www.grid.ac/institutes/grid.454840.9",
"name": [
"Institute of Agrobiological Genetics and Physiology, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu Province, China"
],
"type": "Organization"
},
"familyName": "Wu",
"givenName": "J. Y.",
"id": "sg:person.012377665223.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012377665223.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Agrobiological Genetics and Physiology, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu Province, China",
"id": "http://www.grid.ac/institutes/grid.454840.9",
"name": [
"Institute of Agrobiological Genetics and Physiology, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu Province, China"
],
"type": "Organization"
},
"familyName": "She",
"givenName": "J. M.",
"id": "sg:person.010207343623.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010207343623.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Agrobiological Genetics and Physiology, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu Province, China",
"id": "http://www.grid.ac/institutes/grid.454840.9",
"name": [
"Institute of Agrobiological Genetics and Physiology, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu Province, China"
],
"type": "Organization"
},
"familyName": "Cai",
"givenName": "X. N.",
"id": "sg:person.012230201176.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012230201176.00"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Biotechnology in Agriculture and Forestry, A-137 New Friends Colony, 110065, New Delhi, India",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Biotechnology in Agriculture and Forestry, A-137 New Friends Colony, 110065, New Delhi, India"
],
"type": "Organization"
},
"familyName": "Bajaj",
"givenName": "Y. P. S.",
"id": "sg:person.012105314401.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105314401.85"
],
"type": "Person"
}
],
"datePublished": "1998",
"datePublishedReg": "1998-01-01",
"description": "For the induction of genetic variability and genetic manipulation studies, it is essential that the cells in culture develop into complete plants. In cotton, callus capable of differentiation has been established in a number of wild and cultivated species of Gossypium. There are two modes of differentiation, i.e., organogenesis through bud formation and somatic embryogenesis, the latter being more prevalent. Recently, numerous publications have appeared on the induction of somatic embryogenesis in cotton, and the subject reviewed (Gawel and Robacker 1995). Plants regenerated from callus derived from segments of hypocotyl and leaf, and isolated protoplasts transferred to pots/ field matured, and some of them bloomed and set bolls (Shoemaker et al. 1986; Stelly et al. 1989; Zhang et al. 1994). In this chapter, our work on the establishment of callus, induction of somatic embryogenesis, and plant regeneration in various species of Gossypium is discussed.",
"editor": [
{
"familyName": "Bajaj",
"givenName": "Y. P. S.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-80373-4_2",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-80375-8",
"978-3-642-80373-4"
],
"name": "Cotton",
"type": "Book"
},
"keywords": [
"somatic embryogenesis",
"species of Gossypium",
"genetic manipulation studies",
"segments of hypocotyl",
"mode of differentiation",
"cultivated species",
"cotton plants",
"plant regeneration",
"genetic variability",
"complete plants",
"establishment of callus",
"embryogenesis",
"bud formation",
"manipulation studies",
"callus cultures",
"Gossypium",
"plants",
"callus",
"species",
"differentiation",
"induction",
"cotton",
"protoplasts",
"organogenesis",
"hypocotyls",
"regeneration",
"leaves",
"bolls",
"establishment",
"cells",
"culture",
"formation",
"variability",
"segments",
"numerous publications",
"number",
"chapter",
"study",
"mode",
"work",
"field",
"publications",
"subjects"
],
"name": "Establishment of Callus Culture, Somatic Embryogenesis, and the Regeneration of Cotton Plants",
"pagination": "37-47",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017093695"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-80373-4_2"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-80373-4_2",
"https://app.dimensions.ai/details/publication/pub.1017093695"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_188.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-80373-4_2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80373-4_2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80373-4_2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80373-4_2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80373-4_2'
This table displays all metadata directly associated to this object as RDF triples.
127 TRIPLES
23 PREDICATES
68 URIs
61 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-80373-4_2 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0604 |
3 | ″ | schema:author | N58c522ec5ccf44f38f29883f0a49ba56 |
4 | ″ | schema:datePublished | 1998 |
5 | ″ | schema:datePublishedReg | 1998-01-01 |
6 | ″ | schema:description | For the induction of genetic variability and genetic manipulation studies, it is essential that the cells in culture develop into complete plants. In cotton, callus capable of differentiation has been established in a number of wild and cultivated species of Gossypium. There are two modes of differentiation, i.e., organogenesis through bud formation and somatic embryogenesis, the latter being more prevalent. Recently, numerous publications have appeared on the induction of somatic embryogenesis in cotton, and the subject reviewed (Gawel and Robacker 1995). Plants regenerated from callus derived from segments of hypocotyl and leaf, and isolated protoplasts transferred to pots/ field matured, and some of them bloomed and set bolls (Shoemaker et al. 1986; Stelly et al. 1989; Zhang et al. 1994). In this chapter, our work on the establishment of callus, induction of somatic embryogenesis, and plant regeneration in various species of Gossypium is discussed. |
7 | ″ | schema:editor | N2b132230d59c4284ac0afb452717cba1 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N51890390dd9c42e3b0d3464feae18e98 |
12 | ″ | schema:keywords | Gossypium |
13 | ″ | ″ | bolls |
14 | ″ | ″ | bud formation |
15 | ″ | ″ | callus |
16 | ″ | ″ | callus cultures |
17 | ″ | ″ | cells |
18 | ″ | ″ | chapter |
19 | ″ | ″ | complete plants |
20 | ″ | ″ | cotton |
21 | ″ | ″ | cotton plants |
22 | ″ | ″ | cultivated species |
23 | ″ | ″ | culture |
24 | ″ | ″ | differentiation |
25 | ″ | ″ | embryogenesis |
26 | ″ | ″ | establishment |
27 | ″ | ″ | establishment of callus |
28 | ″ | ″ | field |
29 | ″ | ″ | formation |
30 | ″ | ″ | genetic manipulation studies |
31 | ″ | ″ | genetic variability |
32 | ″ | ″ | hypocotyls |
33 | ″ | ″ | induction |
34 | ″ | ″ | leaves |
35 | ″ | ″ | manipulation studies |
36 | ″ | ″ | mode |
37 | ″ | ″ | mode of differentiation |
38 | ″ | ″ | number |
39 | ″ | ″ | numerous publications |
40 | ″ | ″ | organogenesis |
41 | ″ | ″ | plant regeneration |
42 | ″ | ″ | plants |
43 | ″ | ″ | protoplasts |
44 | ″ | ″ | publications |
45 | ″ | ″ | regeneration |
46 | ″ | ″ | segments |
47 | ″ | ″ | segments of hypocotyl |
48 | ″ | ″ | somatic embryogenesis |
49 | ″ | ″ | species |
50 | ″ | ″ | species of Gossypium |
51 | ″ | ″ | study |
52 | ″ | ″ | subjects |
53 | ″ | ″ | variability |
54 | ″ | ″ | work |
55 | ″ | schema:name | Establishment of Callus Culture, Somatic Embryogenesis, and the Regeneration of Cotton Plants |
56 | ″ | schema:pagination | 37-47 |
57 | ″ | schema:productId | N650c54ca5f3a4eeb961da1bd0f5eafe1 |
58 | ″ | ″ | Nc5ddac154fcb45b5a07ec8e97cfe0fdd |
59 | ″ | schema:publisher | Nda47114a76b5466aa828733f60eb002c |
60 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017093695 |
61 | ″ | ″ | https://doi.org/10.1007/978-3-642-80373-4_2 |
62 | ″ | schema:sdDatePublished | 2022-05-10T10:40 |
63 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
64 | ″ | schema:sdPublisher | N451e4c867cbd4399a4a2007b3958bbb9 |
65 | ″ | schema:url | https://doi.org/10.1007/978-3-642-80373-4_2 |
66 | ″ | sgo:license | sg:explorer/license/ |
67 | ″ | sgo:sdDataset | chapters |
68 | ″ | rdf:type | schema:Chapter |
69 | N2b132230d59c4284ac0afb452717cba1 | rdf:first | N8f63e0f413e04584988cafc60d2103b4 |
70 | ″ | rdf:rest | rdf:nil |
71 | N451e4c867cbd4399a4a2007b3958bbb9 | schema:name | Springer Nature - SN SciGraph project |
72 | ″ | rdf:type | schema:Organization |
73 | N51890390dd9c42e3b0d3464feae18e98 | schema:isbn | 978-3-642-80373-4 |
74 | ″ | ″ | 978-3-642-80375-8 |
75 | ″ | schema:name | Cotton |
76 | ″ | rdf:type | schema:Book |
77 | N58c522ec5ccf44f38f29883f0a49ba56 | rdf:first | sg:person.012377665223.25 |
78 | ″ | rdf:rest | N6215f84efa5442808988b10975323abe |
79 | N6215f84efa5442808988b10975323abe | rdf:first | sg:person.010207343623.24 |
80 | ″ | rdf:rest | N82c1d7ee30b54c128d3f3523134d7b7e |
81 | N650c54ca5f3a4eeb961da1bd0f5eafe1 | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1017093695 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | N82c1d7ee30b54c128d3f3523134d7b7e | rdf:first | sg:person.012230201176.00 |
85 | ″ | rdf:rest | Na366ed9325214e6c994c7aec609d79ee |
86 | N8f63e0f413e04584988cafc60d2103b4 | schema:familyName | Bajaj |
87 | ″ | schema:givenName | Y. P. S. |
88 | ″ | rdf:type | schema:Person |
89 | Na366ed9325214e6c994c7aec609d79ee | rdf:first | sg:person.012105314401.85 |
90 | ″ | rdf:rest | rdf:nil |
91 | Nc5ddac154fcb45b5a07ec8e97cfe0fdd | schema:name | doi |
92 | ″ | schema:value | 10.1007/978-3-642-80373-4_2 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | Nda47114a76b5466aa828733f60eb002c | schema:name | Springer Nature |
95 | ″ | rdf:type | schema:Organisation |
96 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Biological Sciences |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Genetics |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | sg:person.010207343623.24 | schema:affiliation | grid-institutes:grid.454840.9 |
103 | ″ | schema:familyName | She |
104 | ″ | schema:givenName | J. M. |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010207343623.24 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.012105314401.85 | schema:affiliation | grid-institutes:None |
108 | ″ | schema:familyName | Bajaj |
109 | ″ | schema:givenName | Y. P. S. |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105314401.85 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.012230201176.00 | schema:affiliation | grid-institutes:grid.454840.9 |
113 | ″ | schema:familyName | Cai |
114 | ″ | schema:givenName | X. N. |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012230201176.00 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.012377665223.25 | schema:affiliation | grid-institutes:grid.454840.9 |
118 | ″ | schema:familyName | Wu |
119 | ″ | schema:givenName | J. Y. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012377665223.25 |
121 | ″ | rdf:type | schema:Person |
122 | grid-institutes:None | schema:alternateName | Biotechnology in Agriculture and Forestry, A-137 New Friends Colony, 110065, New Delhi, India |
123 | ″ | schema:name | Biotechnology in Agriculture and Forestry, A-137 New Friends Colony, 110065, New Delhi, India |
124 | ″ | rdf:type | schema:Organization |
125 | grid-institutes:grid.454840.9 | schema:alternateName | Institute of Agrobiological Genetics and Physiology, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu Province, China |
126 | ″ | schema:name | Institute of Agrobiological Genetics and Physiology, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu Province, China |
127 | ″ | rdf:type | schema:Organization |