The Role of Tip Atomic and Electronic Structure in Scanning Tunneling Microscopy and Spectroscopy View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

M. Tsukada , K. Kobayashi , N. Isshiki , S. Watanabe , H. Kageshima , T. Schimizu

ABSTRACT

Based on the first-principles Local Density Functional (LDA) calculation of the electronic states both for the tip and the sample surface, theoretical simulation of scanning tunneling microscopy and spectroscopy has been performed for various surface systems. For the tip, cluster models made of 10–20 atoms are utilized and for the sample surface slab models with several atomic layers are adopted. It is found that most of the tunnel current is concentrated on a single apex atom, if the other atoms on the top of the tip are not located on the same level. In such a case the STM image is normal with an atomic resolution. However, if the apex of the tip is formed by more than one atom, abnormal images tend to be formed. We can verify this feature by the numerical results for graphite, Si(100), and Si(111)/Ag surfaces. Due to the interplay between the tip and surface electronic states, some exotic behavior of electron tunneling can be observed in STM/STS. As examples we discuss the negative tunneling conductance observed in a nano-scale region, and the light emission from STM. These phenomena are explained based on realistic calculations of electronic states of the tip/sample system. More... »

PAGES

77-103

Book

TITLE

Scanning Tunneling Microscopy III

ISBN

978-3-540-60824-0
978-3-642-80118-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-80118-1_5

DOI

http://dx.doi.org/10.1007/978-3-642-80118-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049901059


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Tsukada", 
        "givenName": "M.", 
        "id": "sg:person.016242434421.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kobayashi", 
        "givenName": "K.", 
        "id": "sg:person.014274552061.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274552061.17"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Isshiki", 
        "givenName": "N.", 
        "id": "sg:person.011420022017.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420022017.34"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Watanabe", 
        "givenName": "S.", 
        "id": "sg:person.012557533631.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557533631.27"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kageshima", 
        "givenName": "H.", 
        "id": "sg:person.012402730461.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402730461.05"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Schimizu", 
        "givenName": "T.", 
        "id": "sg:person.07612474320.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07612474320.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "Based on the first-principles Local Density Functional (LDA) calculation of the electronic states both for the tip and the sample surface, theoretical simulation of scanning tunneling microscopy and spectroscopy has been performed for various surface systems. For the tip, cluster models made of 10\u201320 atoms are utilized and for the sample surface slab models with several atomic layers are adopted. It is found that most of the tunnel current is concentrated on a single apex atom, if the other atoms on the top of the tip are not located on the same level. In such a case the STM image is normal with an atomic resolution. However, if the apex of the tip is formed by more than one atom, abnormal images tend to be formed. We can verify this feature by the numerical results for graphite, Si(100), and Si(111)/Ag surfaces. Due to the interplay between the tip and surface electronic states, some exotic behavior of electron tunneling can be observed in STM/STS. As examples we discuss the negative tunneling conductance observed in a nano-scale region, and the light emission from STM. These phenomena are explained based on realistic calculations of electronic states of the tip/sample system.", 
    "editor": [
      {
        "familyName": "Wiesendanger", 
        "givenName": "Roland", 
        "type": "Person"
      }, 
      {
        "familyName": "G\u00fcntherodt", 
        "givenName": "Hans-Joachim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-80118-1_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-60824-0", 
        "978-3-642-80118-1"
      ], 
      "name": "Scanning Tunneling Microscopy III", 
      "type": "Book"
    }, 
    "keywords": [
      "electronic states", 
      "first-principle local density functional calculation", 
      "tip/sample system", 
      "single apex atom", 
      "scanning tunneling microscopy", 
      "STM/STS", 
      "surface electronic states", 
      "local density functional calculations", 
      "nano-scale region", 
      "apex atom", 
      "surface slab models", 
      "tunneling microscopy", 
      "atomic layers", 
      "electron tunneling", 
      "atomic resolution", 
      "density functional calculations", 
      "tunneling conductance", 
      "STM images", 
      "exotic behavior", 
      "sample surface", 
      "light emission", 
      "tunnel current", 
      "theoretical simulations", 
      "electronic structure", 
      "realistic calculations", 
      "atoms", 
      "functional calculations", 
      "cluster model", 
      "surface system", 
      "slab model", 
      "spectroscopy", 
      "microscopy", 
      "calculations", 
      "atomic", 
      "sample system", 
      "tunneling", 
      "STM", 
      "tip", 
      "state", 
      "emission", 
      "surface", 
      "graphite", 
      "resolution", 
      "current", 
      "scanning", 
      "layer", 
      "images", 
      "conductance", 
      "phenomenon", 
      "interplay", 
      "numerical results", 
      "structure", 
      "simulations", 
      "top", 
      "system", 
      "region", 
      "model", 
      "STS", 
      "features", 
      "apex", 
      "behavior", 
      "example", 
      "results", 
      "same level", 
      "abnormal images", 
      "cases", 
      "levels", 
      "role", 
      "sample surface slab models", 
      "negative tunneling conductance", 
      "Tip Atomic"
    ], 
    "name": "The Role of Tip Atomic and Electronic Structure in Scanning Tunneling Microscopy and Spectroscopy", 
    "pagination": "77-103", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049901059"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-80118-1_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-80118-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1049901059"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_440.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-80118-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80118-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80118-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80118-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-80118-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      23 PREDICATES      97 URIs      90 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-80118-1_5 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nf808796c59184fb4994acd0353a1c3ac
4 schema:datePublished 1996
5 schema:datePublishedReg 1996-01-01
6 schema:description Based on the first-principles Local Density Functional (LDA) calculation of the electronic states both for the tip and the sample surface, theoretical simulation of scanning tunneling microscopy and spectroscopy has been performed for various surface systems. For the tip, cluster models made of 10–20 atoms are utilized and for the sample surface slab models with several atomic layers are adopted. It is found that most of the tunnel current is concentrated on a single apex atom, if the other atoms on the top of the tip are not located on the same level. In such a case the STM image is normal with an atomic resolution. However, if the apex of the tip is formed by more than one atom, abnormal images tend to be formed. We can verify this feature by the numerical results for graphite, Si(100), and Si(111)/Ag surfaces. Due to the interplay between the tip and surface electronic states, some exotic behavior of electron tunneling can be observed in STM/STS. As examples we discuss the negative tunneling conductance observed in a nano-scale region, and the light emission from STM. These phenomena are explained based on realistic calculations of electronic states of the tip/sample system.
7 schema:editor N137dddeeb508427d8a51b41213f4085c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ncef39514f6554e0ab4a94e57959cde2d
12 schema:keywords STM
13 STM images
14 STM/STS
15 STS
16 Tip Atomic
17 abnormal images
18 apex
19 apex atom
20 atomic
21 atomic layers
22 atomic resolution
23 atoms
24 behavior
25 calculations
26 cases
27 cluster model
28 conductance
29 current
30 density functional calculations
31 electron tunneling
32 electronic states
33 electronic structure
34 emission
35 example
36 exotic behavior
37 features
38 first-principle local density functional calculation
39 functional calculations
40 graphite
41 images
42 interplay
43 layer
44 levels
45 light emission
46 local density functional calculations
47 microscopy
48 model
49 nano-scale region
50 negative tunneling conductance
51 numerical results
52 phenomenon
53 realistic calculations
54 region
55 resolution
56 results
57 role
58 same level
59 sample surface
60 sample surface slab models
61 sample system
62 scanning
63 scanning tunneling microscopy
64 simulations
65 single apex atom
66 slab model
67 spectroscopy
68 state
69 structure
70 surface
71 surface electronic states
72 surface slab models
73 surface system
74 system
75 theoretical simulations
76 tip
77 tip/sample system
78 top
79 tunnel current
80 tunneling
81 tunneling conductance
82 tunneling microscopy
83 schema:name The Role of Tip Atomic and Electronic Structure in Scanning Tunneling Microscopy and Spectroscopy
84 schema:pagination 77-103
85 schema:productId N9e24a8b2504a4f1db77ff48784dafdec
86 Nbe4aa72a00eb493a99c8c6b4c7f96f53
87 schema:publisher N7dba5de0487345dd9a2896e316d4687c
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049901059
89 https://doi.org/10.1007/978-3-642-80118-1_5
90 schema:sdDatePublished 2022-01-01T19:25
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Na7ea96544a554389a37c8d80fb101f97
93 schema:url https://doi.org/10.1007/978-3-642-80118-1_5
94 sgo:license sg:explorer/license/
95 sgo:sdDataset chapters
96 rdf:type schema:Chapter
97 N137dddeeb508427d8a51b41213f4085c rdf:first N60a7c3a939664aed945efc4bb928bee2
98 rdf:rest N4a8521fa5ffa45f0a0b440ffb8d52221
99 N252e73187419417aa3a083a45f918e8f rdf:first sg:person.012557533631.27
100 rdf:rest Nf64c08313122417ea0360b87d9abc703
101 N4232c0d3caec400fbd93bf35ebd6a529 rdf:first sg:person.011420022017.34
102 rdf:rest N252e73187419417aa3a083a45f918e8f
103 N4a8521fa5ffa45f0a0b440ffb8d52221 rdf:first Nf37edda768784be2a967c276604cf02a
104 rdf:rest rdf:nil
105 N60a7c3a939664aed945efc4bb928bee2 schema:familyName Wiesendanger
106 schema:givenName Roland
107 rdf:type schema:Person
108 N775b4665746e49bea9b7552f489df936 rdf:first sg:person.014274552061.17
109 rdf:rest N4232c0d3caec400fbd93bf35ebd6a529
110 N7dba5de0487345dd9a2896e316d4687c schema:name Springer Nature
111 rdf:type schema:Organisation
112 N9e24a8b2504a4f1db77ff48784dafdec schema:name dimensions_id
113 schema:value pub.1049901059
114 rdf:type schema:PropertyValue
115 Na7ea96544a554389a37c8d80fb101f97 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nbe4aa72a00eb493a99c8c6b4c7f96f53 schema:name doi
118 schema:value 10.1007/978-3-642-80118-1_5
119 rdf:type schema:PropertyValue
120 Ncef39514f6554e0ab4a94e57959cde2d schema:isbn 978-3-540-60824-0
121 978-3-642-80118-1
122 schema:name Scanning Tunneling Microscopy III
123 rdf:type schema:Book
124 Neb3e21cf7b1f4005b6ebb19a1191af85 rdf:first sg:person.07612474320.43
125 rdf:rest rdf:nil
126 Nf37edda768784be2a967c276604cf02a schema:familyName Güntherodt
127 schema:givenName Hans-Joachim
128 rdf:type schema:Person
129 Nf64c08313122417ea0360b87d9abc703 rdf:first sg:person.012402730461.05
130 rdf:rest Neb3e21cf7b1f4005b6ebb19a1191af85
131 Nf808796c59184fb4994acd0353a1c3ac rdf:first sg:person.016242434421.06
132 rdf:rest N775b4665746e49bea9b7552f489df936
133 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
137 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
138 rdf:type schema:DefinedTerm
139 sg:person.011420022017.34 schema:familyName Isshiki
140 schema:givenName N.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420022017.34
142 rdf:type schema:Person
143 sg:person.012402730461.05 schema:familyName Kageshima
144 schema:givenName H.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402730461.05
146 rdf:type schema:Person
147 sg:person.012557533631.27 schema:familyName Watanabe
148 schema:givenName S.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012557533631.27
150 rdf:type schema:Person
151 sg:person.014274552061.17 schema:familyName Kobayashi
152 schema:givenName K.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274552061.17
154 rdf:type schema:Person
155 sg:person.016242434421.06 schema:familyName Tsukada
156 schema:givenName M.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06
158 rdf:type schema:Person
159 sg:person.07612474320.43 schema:familyName Schimizu
160 schema:givenName T.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07612474320.43
162 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...