Lattice Analysis to Assess Fiber-matrix Interface Behavior under Various Experimental Configurations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

G. Frantziskonis , Theodore E. Matikas , Prasanna Karpur , S. Krishnamurthy , Leon Shaw

ABSTRACT

This work utilizes a novel procedure for obtaining quantitative information on the mechanical properties of the fiber-matrix interface in composite materials. The method simulates actual experiments in detail, including fiber breakage, matrix yield and/or cracking, and interface failure. In a recent study, the procedure was implemented for the following commonly performed experiments: (a) the fragmentation test for metal matrix composites (MMCs); (b) the pushout and pullout tests for MMCs as well as ceramic matrix composites. In the simulations, the test configuration is discretized into a lattice which delineates the matrix, the fiber, and the interface. Details can be found in [1]. The simulations provide further understanding of the mechanisms involved during the relevant testing. In addition, through back-analysis, quantitative values of the, homogenized, interface properties can be obtained. In this paper, we first describe simulations of the pushout/pullout and fragmentation tests for a titanium matrix, silicon carbide (SiC) fiber composite. Relevant interface properties are evaluated by simulating the former test. Using these values, we study the response of both test configurations, and then compare the numerical results with actual experimental data. Further, we combine recent experimental results with relevant simulations for the so-called transverse test of the same material composition. More... »

PAGES

2563-2568

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-79654-8_425

DOI

http://dx.doi.org/10.1007/978-3-642-79654-8_425

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052925602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona, Tucson, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "University of Arizona, Tucson, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frantziskonis", 
        "givenName": "G.", 
        "id": "sg:person.011531741331.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531741331.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Dayton Research Institute, Dayton, USA", 
          "id": "http://www.grid.ac/institutes/grid.266231.2", 
          "name": [
            "University of Dayton Research Institute, Dayton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matikas", 
        "givenName": "Theodore E.", 
        "id": "sg:person.014746314635.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014746314635.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Dayton Research Institute, Dayton, USA", 
          "id": "http://www.grid.ac/institutes/grid.266231.2", 
          "name": [
            "University of Dayton Research Institute, Dayton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karpur", 
        "givenName": "Prasanna", 
        "id": "sg:person.015044273617.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015044273617.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universal Energy Systems, Inc., Dayton, USA", 
          "id": "http://www.grid.ac/institutes/grid.296952.3", 
          "name": [
            "Universal Energy Systems, Inc., Dayton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnamurthy", 
        "givenName": "S.", 
        "id": "sg:person.013505426057.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505426057.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.63054.34", 
          "name": [
            "University of Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "Leon", 
        "id": "sg:person.011503522253.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011503522253.06"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "This work utilizes a novel procedure for obtaining quantitative information on the mechanical properties of the fiber-matrix interface in composite materials. The method simulates actual experiments in detail, including fiber breakage, matrix yield and/or cracking, and interface failure. In a recent study, the procedure was implemented for the following commonly performed experiments: (a) the fragmentation test for metal matrix composites (MMCs); (b) the pushout and pullout tests for MMCs as well as ceramic matrix composites. In the simulations, the test configuration is discretized into a lattice which delineates the matrix, the fiber, and the interface. Details can be found in [1]. The simulations provide further understanding of the mechanisms involved during the relevant testing. In addition, through back-analysis, quantitative values of the, homogenized, interface properties can be obtained. In this paper, we first describe simulations of the pushout/pullout and fragmentation tests for a titanium matrix, silicon carbide (SiC) fiber composite. Relevant interface properties are evaluated by simulating the former test. Using these values, we study the response of both test configurations, and then compare the numerical results with actual experimental data. Further, we combine recent experimental results with relevant simulations for the so-called transverse test of the same material composition.", 
    "editor": [
      {
        "familyName": "Atluri", 
        "givenName": "S. N.", 
        "type": "Person"
      }, 
      {
        "familyName": "Yagawa", 
        "givenName": "G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Cruse", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-79654-8_425", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-79656-2", 
        "978-3-642-79654-8"
      ], 
      "name": "Computational Mechanics \u201995", 
      "type": "Book"
    }, 
    "keywords": [
      "metal matrix composites", 
      "matrix composites", 
      "fibre-matrix interface behaviour", 
      "interface properties", 
      "fragmentation test", 
      "silicon carbide fiber composites", 
      "fiber-matrix interface", 
      "ceramic matrix composites", 
      "test configuration", 
      "fiber composites", 
      "same material composition", 
      "titanium matrix", 
      "fiber breakage", 
      "composite materials", 
      "mechanical properties", 
      "interface behavior", 
      "pullout tests", 
      "actual experimental data", 
      "material composition", 
      "composites", 
      "transverse test", 
      "experimental configuration", 
      "numerical results", 
      "experimental data", 
      "actual experiments", 
      "relevant simulations", 
      "matrix yields", 
      "simulations", 
      "experimental results", 
      "interface", 
      "properties", 
      "cracking", 
      "pullout", 
      "configuration", 
      "relevant testing", 
      "recent experimental results", 
      "matrix", 
      "test", 
      "quantitative information", 
      "novel procedure", 
      "lattice analysis", 
      "materials", 
      "quantitative values", 
      "fibers", 
      "breakage", 
      "experiments", 
      "detail", 
      "former test", 
      "behavior", 
      "results", 
      "values", 
      "pushout", 
      "work", 
      "method", 
      "testing", 
      "composition", 
      "procedure", 
      "further understanding", 
      "lattice", 
      "failure", 
      "addition", 
      "analysis", 
      "mechanism", 
      "yield", 
      "data", 
      "study", 
      "information", 
      "response", 
      "understanding", 
      "Recent studies", 
      "paper", 
      "pushout/pullout", 
      "carbide (SiC) fiber composite", 
      "Relevant interface properties", 
      "Assess Fiber-matrix Interface Behavior"
    ], 
    "name": "Lattice Analysis to Assess Fiber-matrix Interface Behavior under Various Experimental Configurations", 
    "pagination": "2563-2568", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052925602"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-79654-8_425"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-79654-8_425", 
      "https://app.dimensions.ai/details/publication/pub.1052925602"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_72.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-79654-8_425"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79654-8_425'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79654-8_425'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79654-8_425'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79654-8_425'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      23 PREDICATES      101 URIs      94 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-79654-8_425 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc5f8ceccdd344184a3dd48bcca4dedc3
4 schema:datePublished 1995
5 schema:datePublishedReg 1995-01-01
6 schema:description This work utilizes a novel procedure for obtaining quantitative information on the mechanical properties of the fiber-matrix interface in composite materials. The method simulates actual experiments in detail, including fiber breakage, matrix yield and/or cracking, and interface failure. In a recent study, the procedure was implemented for the following commonly performed experiments: (a) the fragmentation test for metal matrix composites (MMCs); (b) the pushout and pullout tests for MMCs as well as ceramic matrix composites. In the simulations, the test configuration is discretized into a lattice which delineates the matrix, the fiber, and the interface. Details can be found in [1]. The simulations provide further understanding of the mechanisms involved during the relevant testing. In addition, through back-analysis, quantitative values of the, homogenized, interface properties can be obtained. In this paper, we first describe simulations of the pushout/pullout and fragmentation tests for a titanium matrix, silicon carbide (SiC) fiber composite. Relevant interface properties are evaluated by simulating the former test. Using these values, we study the response of both test configurations, and then compare the numerical results with actual experimental data. Further, we combine recent experimental results with relevant simulations for the so-called transverse test of the same material composition.
7 schema:editor Nc3c4c97018d549c9aaa2f59acaf8cbf2
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf8dafed70c17484c89dc578f4324a4ee
12 schema:keywords Assess Fiber-matrix Interface Behavior
13 Recent studies
14 Relevant interface properties
15 actual experimental data
16 actual experiments
17 addition
18 analysis
19 behavior
20 breakage
21 carbide (SiC) fiber composite
22 ceramic matrix composites
23 composite materials
24 composites
25 composition
26 configuration
27 cracking
28 data
29 detail
30 experimental configuration
31 experimental data
32 experimental results
33 experiments
34 failure
35 fiber breakage
36 fiber composites
37 fiber-matrix interface
38 fibers
39 fibre-matrix interface behaviour
40 former test
41 fragmentation test
42 further understanding
43 information
44 interface
45 interface behavior
46 interface properties
47 lattice
48 lattice analysis
49 material composition
50 materials
51 matrix
52 matrix composites
53 matrix yields
54 mechanical properties
55 mechanism
56 metal matrix composites
57 method
58 novel procedure
59 numerical results
60 paper
61 procedure
62 properties
63 pullout
64 pullout tests
65 pushout
66 pushout/pullout
67 quantitative information
68 quantitative values
69 recent experimental results
70 relevant simulations
71 relevant testing
72 response
73 results
74 same material composition
75 silicon carbide fiber composites
76 simulations
77 study
78 test
79 test configuration
80 testing
81 titanium matrix
82 transverse test
83 understanding
84 values
85 work
86 yield
87 schema:name Lattice Analysis to Assess Fiber-matrix Interface Behavior under Various Experimental Configurations
88 schema:pagination 2563-2568
89 schema:productId N71544036cdc542598aa1268fa9f133e9
90 Nc913700d9a3347d68cc36f75a89f6b14
91 schema:publisher N7ac01a0c18ec4ca380c20696211e525f
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925602
93 https://doi.org/10.1007/978-3-642-79654-8_425
94 schema:sdDatePublished 2021-12-01T20:13
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Naa603b732c834e8d9d3d3f3117316efb
97 schema:url https://doi.org/10.1007/978-3-642-79654-8_425
98 sgo:license sg:explorer/license/
99 sgo:sdDataset chapters
100 rdf:type schema:Chapter
101 N3a182c15daf34efb98976ccb8bf319d4 rdf:first sg:person.013505426057.50
102 rdf:rest Nafdc2259c44049308d30ab5f4098d428
103 N692d729e6fee4054bf3f053824d99ce4 rdf:first N6d73492919e547309efca54c666e8dcb
104 rdf:rest rdf:nil
105 N6d73492919e547309efca54c666e8dcb schema:familyName Cruse
106 schema:givenName Thomas
107 rdf:type schema:Person
108 N71544036cdc542598aa1268fa9f133e9 schema:name dimensions_id
109 schema:value pub.1052925602
110 rdf:type schema:PropertyValue
111 N7ac01a0c18ec4ca380c20696211e525f schema:name Springer Nature
112 rdf:type schema:Organisation
113 N8b02f71ac86043f5b4b3620ffe8a8378 schema:familyName Yagawa
114 schema:givenName G.
115 rdf:type schema:Person
116 Naa603b732c834e8d9d3d3f3117316efb schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nafdc2259c44049308d30ab5f4098d428 rdf:first sg:person.011503522253.06
119 rdf:rest rdf:nil
120 Nc3c4c97018d549c9aaa2f59acaf8cbf2 rdf:first Nd18c52a46e7d4cbeb9c8cec077dff53b
121 rdf:rest Ne020a810c33140fdb7c3878c62520a10
122 Nc5f8ceccdd344184a3dd48bcca4dedc3 rdf:first sg:person.011531741331.43
123 rdf:rest Ne707e104f9ef4ef1adc0e756d3126a3d
124 Nc913700d9a3347d68cc36f75a89f6b14 schema:name doi
125 schema:value 10.1007/978-3-642-79654-8_425
126 rdf:type schema:PropertyValue
127 Nd18c52a46e7d4cbeb9c8cec077dff53b schema:familyName Atluri
128 schema:givenName S. N.
129 rdf:type schema:Person
130 Ndc526e9cfccd4a66864f15d5773da338 rdf:first sg:person.015044273617.14
131 rdf:rest N3a182c15daf34efb98976ccb8bf319d4
132 Ne020a810c33140fdb7c3878c62520a10 rdf:first N8b02f71ac86043f5b4b3620ffe8a8378
133 rdf:rest N692d729e6fee4054bf3f053824d99ce4
134 Ne707e104f9ef4ef1adc0e756d3126a3d rdf:first sg:person.014746314635.24
135 rdf:rest Ndc526e9cfccd4a66864f15d5773da338
136 Nf8dafed70c17484c89dc578f4324a4ee schema:isbn 978-3-642-79654-8
137 978-3-642-79656-2
138 schema:name Computational Mechanics ’95
139 rdf:type schema:Book
140 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
141 schema:name Engineering
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
144 schema:name Materials Engineering
145 rdf:type schema:DefinedTerm
146 sg:person.011503522253.06 schema:affiliation grid-institutes:grid.63054.34
147 schema:familyName Shaw
148 schema:givenName Leon
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011503522253.06
150 rdf:type schema:Person
151 sg:person.011531741331.43 schema:affiliation grid-institutes:grid.134563.6
152 schema:familyName Frantziskonis
153 schema:givenName G.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531741331.43
155 rdf:type schema:Person
156 sg:person.013505426057.50 schema:affiliation grid-institutes:grid.296952.3
157 schema:familyName Krishnamurthy
158 schema:givenName S.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505426057.50
160 rdf:type schema:Person
161 sg:person.014746314635.24 schema:affiliation grid-institutes:grid.266231.2
162 schema:familyName Matikas
163 schema:givenName Theodore E.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014746314635.24
165 rdf:type schema:Person
166 sg:person.015044273617.14 schema:affiliation grid-institutes:grid.266231.2
167 schema:familyName Karpur
168 schema:givenName Prasanna
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015044273617.14
170 rdf:type schema:Person
171 grid-institutes:grid.134563.6 schema:alternateName University of Arizona, Tucson, USA
172 schema:name University of Arizona, Tucson, USA
173 rdf:type schema:Organization
174 grid-institutes:grid.266231.2 schema:alternateName University of Dayton Research Institute, Dayton, USA
175 schema:name University of Dayton Research Institute, Dayton, USA
176 rdf:type schema:Organization
177 grid-institutes:grid.296952.3 schema:alternateName Universal Energy Systems, Inc., Dayton, USA
178 schema:name Universal Energy Systems, Inc., Dayton, USA
179 rdf:type schema:Organization
180 grid-institutes:grid.63054.34 schema:alternateName University of Connecticut, USA
181 schema:name University of Connecticut, USA
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...