Quantitative measurement of cerebral blood flow by dynamic CT View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

R. Takehara , D. Naka , Y. Naka , N. Tsuji , H. Imai , T. Kido , T. Terada , K. Nambu

ABSTRACT

We propose a new “BOX-MTT method” to measure the regional cerebral blood flow (rCBF) quantitatively using a fourth-generation CT scanner. In this method, the time-density curve (TDC) of the region of interest (ROI) on the brain tissue is assumed to be proportional to convolution of the TDC of the artery feeding the ROI and the modulation transfer function (MTF). Although the transit pattern of the blood through the brain tissue is not well known, we hypothesise that the MTF is box-shaped and have named this model the BOX-MTT model. The rCBF and regional cerebral blood volume rCBV were measured by our method in eight patients with various neurological diseases. Our model fitted the original TDC well, and rCBV and rCBF values in various parts of the normal hemispheres were similar to those measured by PET or SPECT. By applying deconvolution analysis, we found that the MTF in the brain tissue was approximately box-shaped. Our method offers quantitative rCBF values by fitting TDCs directly to the BOX-MTT model. More... »

PAGES

580-582

Book

TITLE

Proceedings of the XV Symposium Neuroradiologicum

ISBN

978-3-642-79436-0
978-3-642-79434-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-79434-6_270

DOI

http://dx.doi.org/10.1007/978-3-642-79434-6_270

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030874159


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wakayama Rosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416909.3", 
          "name": [
            "Department of Neurological Surgery, Wakayama Rosai Hospital, 43T-Koya, Wakayama\u00a0640, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takehara", 
        "givenName": "R.", 
        "id": "sg:person.01206276414.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206276414.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Rosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416909.3", 
          "name": [
            "Department of Neurological Surgery, Wakayama Rosai Hospital, 43T-Koya, Wakayama\u00a0640, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naka", 
        "givenName": "D.", 
        "id": "sg:person.01303005113.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303005113.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Rosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416909.3", 
          "name": [
            "Department of Neurological Surgery, Wakayama Rosai Hospital, 43T-Koya, Wakayama\u00a0640, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naka", 
        "givenName": "Y.", 
        "id": "sg:person.01034101145.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034101145.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Rosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416909.3", 
          "name": [
            "Department of Neurological Surgery, Wakayama Rosai Hospital, 43T-Koya, Wakayama\u00a0640, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuji", 
        "givenName": "N.", 
        "id": "sg:person.01030127243.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030127243.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Rosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416909.3", 
          "name": [
            "Department of Neurological Surgery, Wakayama Rosai Hospital, 43T-Koya, Wakayama\u00a0640, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imai", 
        "givenName": "H.", 
        "id": "sg:person.01363340231.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363340231.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Rosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416909.3", 
          "name": [
            "Department of Neurological Surgery, Wakayama Rosai Hospital, 43T-Koya, Wakayama\u00a0640, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kido", 
        "givenName": "T.", 
        "id": "sg:person.01315572215.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315572215.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Department of Neurological Surgery, Wakayama Medical College, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terada", 
        "givenName": "T.", 
        "id": "sg:person.01303567116.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303567116.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Toshiba Nasu Works, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nambu", 
        "givenName": "K.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.str.22.6.768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001045114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.22.6.772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053500631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082841175", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "We propose a new \u201cBOX-MTT method\u201d to measure the regional cerebral blood flow (rCBF) quantitatively using a fourth-generation CT scanner. In this method, the time-density curve (TDC) of the region of interest (ROI) on the brain tissue is assumed to be proportional to convolution of the TDC of the artery feeding the ROI and the modulation transfer function (MTF). Although the transit pattern of the blood through the brain tissue is not well known, we hypothesise that the MTF is box-shaped and have named this model the BOX-MTT model. The rCBF and regional cerebral blood volume rCBV were measured by our method in eight patients with various neurological diseases. Our model fitted the original TDC well, and rCBV and rCBF values in various parts of the normal hemispheres were similar to those measured by PET or SPECT. By applying deconvolution analysis, we found that the MTF in the brain tissue was approximately box-shaped. Our method offers quantitative rCBF values by fitting TDCs directly to the BOX-MTT model.", 
    "editor": [
      {
        "familyName": "Takahashi", 
        "givenName": "Mutsumasa", 
        "type": "Person"
      }, 
      {
        "familyName": "Korogi", 
        "givenName": "Yukunori", 
        "type": "Person"
      }, 
      {
        "familyName": "Moseley", 
        "givenName": "Ivan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-79434-6_270", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-79436-0", 
        "978-3-642-79434-6"
      ], 
      "name": "Proceedings of the XV Symposium Neuroradiologicum", 
      "type": "Book"
    }, 
    "name": "Quantitative measurement of cerebral blood flow by dynamic CT", 
    "pagination": "580-582", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-79434-6_270"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "931495145cb4f6f94298ac2be13ec3138b3c9b1ec4f635fb3ef988669219d4a9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030874159"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-79434-6_270", 
      "https://app.dimensions.ai/details/publication/pub.1030874159"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000262.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-79434-6_270"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79434-6_270'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79434-6_270'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79434-6_270'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79434-6_270'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-79434-6_270 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nfe5c2ae6bd43479e92c65b5099baf394
4 schema:citation https://app.dimensions.ai/details/publication/pub.1082841175
5 https://doi.org/10.1161/01.str.22.6.768
6 https://doi.org/10.1161/01.str.22.6.772
7 schema:datePublished 1995
8 schema:datePublishedReg 1995-01-01
9 schema:description We propose a new “BOX-MTT method” to measure the regional cerebral blood flow (rCBF) quantitatively using a fourth-generation CT scanner. In this method, the time-density curve (TDC) of the region of interest (ROI) on the brain tissue is assumed to be proportional to convolution of the TDC of the artery feeding the ROI and the modulation transfer function (MTF). Although the transit pattern of the blood through the brain tissue is not well known, we hypothesise that the MTF is box-shaped and have named this model the BOX-MTT model. The rCBF and regional cerebral blood volume rCBV were measured by our method in eight patients with various neurological diseases. Our model fitted the original TDC well, and rCBV and rCBF values in various parts of the normal hemispheres were similar to those measured by PET or SPECT. By applying deconvolution analysis, we found that the MTF in the brain tissue was approximately box-shaped. Our method offers quantitative rCBF values by fitting TDCs directly to the BOX-MTT model.
10 schema:editor Nbedc2209265748758664edbe20162cb8
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N42d2c164158b429bafe5bae4fc856c35
15 schema:name Quantitative measurement of cerebral blood flow by dynamic CT
16 schema:pagination 580-582
17 schema:productId N5d5bcfe350234e29b047d70d3c793ff2
18 Na2dc0db360eb482a8a2740d0e13cb275
19 Nef254c6a8499410aaceafd16b7a95adb
20 schema:publisher Ndefbea5cf29c4a11ad59b06428bb8162
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030874159
22 https://doi.org/10.1007/978-3-642-79434-6_270
23 schema:sdDatePublished 2019-04-15T11:35
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N3890ece6e2c04532babb1a15035cf253
26 schema:url http://link.springer.com/10.1007/978-3-642-79434-6_270
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N09928887263441b7a75ac0be8a87a304 rdf:first sg:person.01315572215.02
31 rdf:rest Nc70f1cba642b4e9f8f5dc42cca71dd22
32 N11cd9185dcf744769534b595d7cd5ca0 rdf:first Nb80281f35a0d4b17915f9aa74c1c8f79
33 rdf:rest rdf:nil
34 N2546961457a544fda784439d98106687 rdf:first Nce36756990544d98918ee55ca06f5336
35 rdf:rest N5b6afbf5b3444e22a34f7c122343b442
36 N33d55d040d9b49e88c4aefba37a789bb schema:name Toshiba Nasu Works, Tochigi, Japan
37 rdf:type schema:Organization
38 N3890ece6e2c04532babb1a15035cf253 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N42d2c164158b429bafe5bae4fc856c35 schema:isbn 978-3-642-79434-6
41 978-3-642-79436-0
42 schema:name Proceedings of the XV Symposium Neuroradiologicum
43 rdf:type schema:Book
44 N5b6afbf5b3444e22a34f7c122343b442 rdf:first N72a98471c08c4ca6b2cada8553303de7
45 rdf:rest rdf:nil
46 N5d5bcfe350234e29b047d70d3c793ff2 schema:name readcube_id
47 schema:value 931495145cb4f6f94298ac2be13ec3138b3c9b1ec4f635fb3ef988669219d4a9
48 rdf:type schema:PropertyValue
49 N6983446d9d8246908be5f8c828c99da7 rdf:first sg:person.01034101145.15
50 rdf:rest Na0ac3ee22d0d42c3b9fb09d081d7a6d1
51 N72a98471c08c4ca6b2cada8553303de7 schema:familyName Moseley
52 schema:givenName Ivan
53 rdf:type schema:Person
54 N94441eb4d6b049d6a4354ca48ad2101d rdf:first sg:person.01363340231.68
55 rdf:rest N09928887263441b7a75ac0be8a87a304
56 Na0ac3ee22d0d42c3b9fb09d081d7a6d1 rdf:first sg:person.01030127243.34
57 rdf:rest N94441eb4d6b049d6a4354ca48ad2101d
58 Na2dc0db360eb482a8a2740d0e13cb275 schema:name doi
59 schema:value 10.1007/978-3-642-79434-6_270
60 rdf:type schema:PropertyValue
61 Nb642d2da4adf4571aacb4db65b35fc6d rdf:first sg:person.01303005113.14
62 rdf:rest N6983446d9d8246908be5f8c828c99da7
63 Nb80281f35a0d4b17915f9aa74c1c8f79 schema:affiliation N33d55d040d9b49e88c4aefba37a789bb
64 schema:familyName Nambu
65 schema:givenName K.
66 rdf:type schema:Person
67 Nbedc2209265748758664edbe20162cb8 rdf:first Nf0544dad785c488bb0504caa4ad502e5
68 rdf:rest N2546961457a544fda784439d98106687
69 Nc70f1cba642b4e9f8f5dc42cca71dd22 rdf:first sg:person.01303567116.97
70 rdf:rest N11cd9185dcf744769534b595d7cd5ca0
71 Nce36756990544d98918ee55ca06f5336 schema:familyName Korogi
72 schema:givenName Yukunori
73 rdf:type schema:Person
74 Ndefbea5cf29c4a11ad59b06428bb8162 schema:location Berlin, Heidelberg
75 schema:name Springer Berlin Heidelberg
76 rdf:type schema:Organisation
77 Nef254c6a8499410aaceafd16b7a95adb schema:name dimensions_id
78 schema:value pub.1030874159
79 rdf:type schema:PropertyValue
80 Nf0544dad785c488bb0504caa4ad502e5 schema:familyName Takahashi
81 schema:givenName Mutsumasa
82 rdf:type schema:Person
83 Nfe5c2ae6bd43479e92c65b5099baf394 rdf:first sg:person.01206276414.60
84 rdf:rest Nb642d2da4adf4571aacb4db65b35fc6d
85 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
86 schema:name Medical and Health Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
89 schema:name Neurosciences
90 rdf:type schema:DefinedTerm
91 sg:person.01030127243.34 schema:affiliation https://www.grid.ac/institutes/grid.416909.3
92 schema:familyName Tsuji
93 schema:givenName N.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030127243.34
95 rdf:type schema:Person
96 sg:person.01034101145.15 schema:affiliation https://www.grid.ac/institutes/grid.416909.3
97 schema:familyName Naka
98 schema:givenName Y.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034101145.15
100 rdf:type schema:Person
101 sg:person.01206276414.60 schema:affiliation https://www.grid.ac/institutes/grid.416909.3
102 schema:familyName Takehara
103 schema:givenName R.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206276414.60
105 rdf:type schema:Person
106 sg:person.01303005113.14 schema:affiliation https://www.grid.ac/institutes/grid.416909.3
107 schema:familyName Naka
108 schema:givenName D.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303005113.14
110 rdf:type schema:Person
111 sg:person.01303567116.97 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
112 schema:familyName Terada
113 schema:givenName T.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303567116.97
115 rdf:type schema:Person
116 sg:person.01315572215.02 schema:affiliation https://www.grid.ac/institutes/grid.416909.3
117 schema:familyName Kido
118 schema:givenName T.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315572215.02
120 rdf:type schema:Person
121 sg:person.01363340231.68 schema:affiliation https://www.grid.ac/institutes/grid.416909.3
122 schema:familyName Imai
123 schema:givenName H.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363340231.68
125 rdf:type schema:Person
126 https://app.dimensions.ai/details/publication/pub.1082841175 schema:CreativeWork
127 https://doi.org/10.1161/01.str.22.6.768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001045114
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1161/01.str.22.6.772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053500631
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.412857.d schema:alternateName Wakayama Medical University
132 schema:name Department of Neurological Surgery, Wakayama Medical College, Wakayama, Japan
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.416909.3 schema:alternateName Wakayama Rosai Hospital
135 schema:name Department of Neurological Surgery, Wakayama Rosai Hospital, 43T-Koya, Wakayama 640, Japan
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...