Ontology type: schema:Chapter
1994
AUTHORSH. Le Treut , Z. X. Li , O. Boucher
ABSTRACTThe LMD atmospheric General Circulation Model includes a cloud water budget equation in which the condensation of water vapour and the precipitation of cloud water are treated as separate processes. Such a distinction has become a standard feature of many models in the recent years. We show here that it has little impact on the simulated monthly mean precipitation. It does however affect strongly the water vapour mixing ratio, the cloud water content and the cloud distribution. If we submit the model to an external perturbation, such as an increase in greenhouse effect, these parameters cause powerful feedback processes, which may affect the mean precipitation: the parameterization of the precipitation process then appears as a key process determining the amplitude of the climate response. More... »
PAGES379-386
Global Precipitations and Climate Change
ISBN
978-3-642-79270-0
978-3-642-79268-7
http://scigraph.springernature.com/pub.10.1007/978-3-642-79268-7_24
DOIhttp://dx.doi.org/10.1007/978-3-642-79268-7_24
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1048240210
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75005, Paris, France",
"id": "http://www.grid.ac/institutes/grid.5607.4",
"name": [
"Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75005, Paris, France"
],
"type": "Organization"
},
"familyName": "Le Treut",
"givenName": "H.",
"id": "sg:person.01077116450.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077116450.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75005, Paris, France",
"id": "http://www.grid.ac/institutes/grid.5607.4",
"name": [
"Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75005, Paris, France"
],
"type": "Organization"
},
"familyName": "Li",
"givenName": "Z. X.",
"id": "sg:person.07347420507.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347420507.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75005, Paris, France",
"id": "http://www.grid.ac/institutes/grid.5607.4",
"name": [
"Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75005, Paris, France"
],
"type": "Organization"
},
"familyName": "Boucher",
"givenName": "O.",
"id": "sg:person.01301253676.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11"
],
"type": "Person"
}
],
"datePublished": "1994",
"datePublishedReg": "1994-01-01",
"description": "The LMD atmospheric General Circulation Model includes a cloud water budget equation in which the condensation of water vapour and the precipitation of cloud water are treated as separate processes. Such a distinction has become a standard feature of many models in the recent years. We show here that it has little impact on the simulated monthly mean precipitation. It does however affect strongly the water vapour mixing ratio, the cloud water content and the cloud distribution. If we submit the model to an external perturbation, such as an increase in greenhouse effect, these parameters cause powerful feedback processes, which may affect the mean precipitation: the parameterization of the precipitation process then appears as a key process determining the amplitude of the climate response.",
"editor": [
{
"familyName": "Desbois",
"givenName": "Michel",
"type": "Person"
},
{
"familyName": "D\u00e9salmand",
"givenName": "Fran\u00e7oise",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-79268-7_24",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-79270-0",
"978-3-642-79268-7"
],
"name": "Global Precipitations and Climate Change",
"type": "Book"
},
"keywords": [
"general circulation model",
"circulation model",
"mean precipitation",
"LMD Atmospheric General Circulation Model",
"atmospheric general circulation model",
"LMD General Circulation Model",
"water vapor",
"cloud water content",
"water budget equation",
"monthly mean precipitation",
"precipitation process",
"climate response",
"cloud water",
"cloud distribution",
"budget equation",
"greenhouse effect",
"precipitation",
"feedback processes",
"parameterization",
"water content",
"key processes",
"vapor",
"little impact",
"water",
"model",
"process",
"distribution",
"perturbations",
"separate processes",
"amplitude",
"impact",
"content",
"external perturbations",
"ratio",
"features",
"recent years",
"years",
"condensation",
"increase",
"parameters",
"response",
"distinction",
"equations",
"effect",
"standard features"
],
"name": "The Parameterization of the Precipitation Process in the LMD General Circulation Model",
"pagination": "379-386",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1048240210"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-79268-7_24"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-79268-7_24",
"https://app.dimensions.ai/details/publication/pub.1048240210"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_297.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-79268-7_24"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79268-7_24'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79268-7_24'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79268-7_24'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-79268-7_24'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
23 PREDICATES
71 URIs
64 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-79268-7_24 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | schema:author | N4577d0b82f614378b587fee9d233f208 |
4 | ″ | schema:datePublished | 1994 |
5 | ″ | schema:datePublishedReg | 1994-01-01 |
6 | ″ | schema:description | The LMD atmospheric General Circulation Model includes a cloud water budget equation in which the condensation of water vapour and the precipitation of cloud water are treated as separate processes. Such a distinction has become a standard feature of many models in the recent years. We show here that it has little impact on the simulated monthly mean precipitation. It does however affect strongly the water vapour mixing ratio, the cloud water content and the cloud distribution. If we submit the model to an external perturbation, such as an increase in greenhouse effect, these parameters cause powerful feedback processes, which may affect the mean precipitation: the parameterization of the precipitation process then appears as a key process determining the amplitude of the climate response. |
7 | ″ | schema:editor | Ned636014800b42978263556211dde912 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N31405b90de98474aae6fe64878278f4a |
12 | ″ | schema:keywords | LMD Atmospheric General Circulation Model |
13 | ″ | ″ | LMD General Circulation Model |
14 | ″ | ″ | amplitude |
15 | ″ | ″ | atmospheric general circulation model |
16 | ″ | ″ | budget equation |
17 | ″ | ″ | circulation model |
18 | ″ | ″ | climate response |
19 | ″ | ″ | cloud distribution |
20 | ″ | ″ | cloud water |
21 | ″ | ″ | cloud water content |
22 | ″ | ″ | condensation |
23 | ″ | ″ | content |
24 | ″ | ″ | distinction |
25 | ″ | ″ | distribution |
26 | ″ | ″ | effect |
27 | ″ | ″ | equations |
28 | ″ | ″ | external perturbations |
29 | ″ | ″ | features |
30 | ″ | ″ | feedback processes |
31 | ″ | ″ | general circulation model |
32 | ″ | ″ | greenhouse effect |
33 | ″ | ″ | impact |
34 | ″ | ″ | increase |
35 | ″ | ″ | key processes |
36 | ″ | ″ | little impact |
37 | ″ | ″ | mean precipitation |
38 | ″ | ″ | model |
39 | ″ | ″ | monthly mean precipitation |
40 | ″ | ″ | parameterization |
41 | ″ | ″ | parameters |
42 | ″ | ″ | perturbations |
43 | ″ | ″ | precipitation |
44 | ″ | ″ | precipitation process |
45 | ″ | ″ | process |
46 | ″ | ″ | ratio |
47 | ″ | ″ | recent years |
48 | ″ | ″ | response |
49 | ″ | ″ | separate processes |
50 | ″ | ″ | standard features |
51 | ″ | ″ | vapor |
52 | ″ | ″ | water |
53 | ″ | ″ | water budget equation |
54 | ″ | ″ | water content |
55 | ″ | ″ | water vapor |
56 | ″ | ″ | years |
57 | ″ | schema:name | The Parameterization of the Precipitation Process in the LMD General Circulation Model |
58 | ″ | schema:pagination | 379-386 |
59 | ″ | schema:productId | N42a78c5004e343a9b5812ae2ce923d39 |
60 | ″ | ″ | N5fea2ff798e84ece8c6493473988b555 |
61 | ″ | schema:publisher | Nd85dab0eef284fee94d883e24c454193 |
62 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048240210 |
63 | ″ | ″ | https://doi.org/10.1007/978-3-642-79268-7_24 |
64 | ″ | schema:sdDatePublished | 2022-05-20T07:45 |
65 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
66 | ″ | schema:sdPublisher | Na5f0995dfe8a4ce9b9076586e6ce9cf5 |
67 | ″ | schema:url | https://doi.org/10.1007/978-3-642-79268-7_24 |
68 | ″ | sgo:license | sg:explorer/license/ |
69 | ″ | sgo:sdDataset | chapters |
70 | ″ | rdf:type | schema:Chapter |
71 | N31405b90de98474aae6fe64878278f4a | schema:isbn | 978-3-642-79268-7 |
72 | ″ | ″ | 978-3-642-79270-0 |
73 | ″ | schema:name | Global Precipitations and Climate Change |
74 | ″ | rdf:type | schema:Book |
75 | N42a78c5004e343a9b5812ae2ce923d39 | schema:name | doi |
76 | ″ | schema:value | 10.1007/978-3-642-79268-7_24 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N4577d0b82f614378b587fee9d233f208 | rdf:first | sg:person.01077116450.69 |
79 | ″ | rdf:rest | N8b202a546f3e418ca5e5d5a95dc028ac |
80 | N5fea2ff798e84ece8c6493473988b555 | schema:name | dimensions_id |
81 | ″ | schema:value | pub.1048240210 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | N7b1847b04fe54d5f98b41d93597be68b | schema:familyName | Désalmand |
84 | ″ | schema:givenName | Françoise |
85 | ″ | rdf:type | schema:Person |
86 | N8b202a546f3e418ca5e5d5a95dc028ac | rdf:first | sg:person.07347420507.05 |
87 | ″ | rdf:rest | Nd39bf8b4436e443c8113c1d13ffda47d |
88 | Na5f0995dfe8a4ce9b9076586e6ce9cf5 | schema:name | Springer Nature - SN SciGraph project |
89 | ″ | rdf:type | schema:Organization |
90 | Nd39bf8b4436e443c8113c1d13ffda47d | rdf:first | sg:person.01301253676.11 |
91 | ″ | rdf:rest | rdf:nil |
92 | Nd85dab0eef284fee94d883e24c454193 | schema:name | Springer Nature |
93 | ″ | rdf:type | schema:Organisation |
94 | Ne7218e364a7740069fa811078a2a148b | rdf:first | N7b1847b04fe54d5f98b41d93597be68b |
95 | ″ | rdf:rest | rdf:nil |
96 | Ned636014800b42978263556211dde912 | rdf:first | Nf9e1c5e81b00451095fc8c091ea5b6d6 |
97 | ″ | rdf:rest | Ne7218e364a7740069fa811078a2a148b |
98 | Nf9e1c5e81b00451095fc8c091ea5b6d6 | schema:familyName | Desbois |
99 | ″ | schema:givenName | Michel |
100 | ″ | rdf:type | schema:Person |
101 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Earth Sciences |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Atmospheric Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | sg:person.01077116450.69 | schema:affiliation | grid-institutes:grid.5607.4 |
108 | ″ | schema:familyName | Le Treut |
109 | ″ | schema:givenName | H. |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077116450.69 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.01301253676.11 | schema:affiliation | grid-institutes:grid.5607.4 |
113 | ″ | schema:familyName | Boucher |
114 | ″ | schema:givenName | O. |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.07347420507.05 | schema:affiliation | grid-institutes:grid.5607.4 |
118 | ″ | schema:familyName | Li |
119 | ″ | schema:givenName | Z. X. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347420507.05 |
121 | ″ | rdf:type | schema:Person |
122 | grid-institutes:grid.5607.4 | schema:alternateName | Laboratoire de Météorologie Dynamique du CNRS, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France |
123 | ″ | schema:name | Laboratoire de Météorologie Dynamique du CNRS, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France |
124 | ″ | rdf:type | schema:Organization |