1992
AUTHORS ABSTRACTBecause of allelic segregation at meiosis, post meiotic gene expression can result in considerable genetic variability in the pollen population even from single plants, and thus offers opportunities for selection among male gametophytes. Due to the haploid state and the large population size, male gametophytic selection (MGS) can be extremely efficient and represent an important factor in the high evolution rate of Angiosperms. Moreover, if used in a controlled way, it can be a powerful tool for manipulating the genetic makeup of many useful plant species. Prerequisites for this to occur are: i) that a considerable amount of genes are expressed postmeiotically, thus producing a large number of pollen phenotypes, and ii) that many of these genes are expressed also in the sporophytic phase. Only in this latter case MGS is expected to exert a significant effect on the resulting sporophytic generation. More... »
PAGES31-39
Sexual Plant Reproduction
ISBN
978-3-642-77679-3
978-3-642-77677-9
http://scigraph.springernature.com/pub.10.1007/978-3-642-77677-9_3
DOIhttp://dx.doi.org/10.1007/978-3-642-77677-9_3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1045768122
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133, Milano, Italy",
"id": "http://www.grid.ac/institutes/grid.4708.b",
"name": [
"Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133, Milano, Italy"
],
"type": "Organization"
},
"familyName": "Frova",
"givenName": "C.",
"id": "sg:person.0772033504.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772033504.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133, Milano, Italy",
"id": "http://www.grid.ac/institutes/grid.4708.b",
"name": [
"Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133, Milano, Italy"
],
"type": "Organization"
},
"familyName": "P\u00e8",
"givenName": "M. E.",
"id": "sg:person.0722026207.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722026207.12"
],
"type": "Person"
}
],
"datePublished": "1992",
"datePublishedReg": "1992-01-01",
"description": "Because of allelic segregation at meiosis, post meiotic gene expression can result in considerable genetic variability in the pollen population even from single plants, and thus offers opportunities for selection among male gametophytes. Due to the haploid state and the large population size, male gametophytic selection (MGS) can be extremely efficient and represent an important factor in the high evolution rate of Angiosperms. Moreover, if used in a controlled way, it can be a powerful tool for manipulating the genetic makeup of many useful plant species. Prerequisites for this to occur are: i) that a considerable amount of genes are expressed postmeiotically, thus producing a large number of pollen phenotypes, and ii) that many of these genes are expressed also in the sporophytic phase. Only in this latter case MGS is expected to exert a significant effect on the resulting sporophytic generation.",
"editor": [
{
"familyName": "Cresti",
"givenName": "Mauro",
"type": "Person"
},
{
"familyName": "Tiezzi",
"givenName": "Antonio",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-77677-9_3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-77679-3",
"978-3-642-77677-9"
],
"name": "Sexual Plant Reproduction",
"type": "Book"
},
"keywords": [
"male gametophytic selection",
"gene expression",
"meiotic gene expression",
"useful plant species",
"considerable genetic variability",
"large population sizes",
"high evolution rate",
"sporophytic phase",
"gametophytic selection",
"haploid state",
"plant species",
"pollen phenotype",
"pollen development",
"male gametophyte",
"sporophytic generation",
"allelic segregation",
"genetic variability",
"single plant",
"population size",
"genetic makeup",
"pollen populations",
"genes",
"expression",
"angiosperms",
"meiosis",
"gametophytes",
"evolution rate",
"powerful tool",
"species",
"plants",
"phenotype",
"selection",
"large number",
"segregation",
"makeup",
"population",
"important factor",
"considerable amount",
"significant effect",
"prerequisite",
"variability",
"development",
"factors",
"generation",
"number",
"size",
"amount",
"tool",
"effect",
"opportunities",
"rate",
"state",
"phase",
"way"
],
"name": "Gene Expression During Pollen Development",
"pagination": "31-39",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1045768122"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-77677-9_3"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-77677-9_3",
"https://app.dimensions.ai/details/publication/pub.1045768122"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_250.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-77677-9_3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-77677-9_3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-77677-9_3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-77677-9_3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-77677-9_3'
This table displays all metadata directly associated to this object as RDF triples.
126 TRIPLES
23 PREDICATES
80 URIs
73 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-77677-9_3 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0604 |
3 | ″ | schema:author | Ndc220ddd2e2d4284b7c10cfa70846723 |
4 | ″ | schema:datePublished | 1992 |
5 | ″ | schema:datePublishedReg | 1992-01-01 |
6 | ″ | schema:description | Because of allelic segregation at meiosis, post meiotic gene expression can result in considerable genetic variability in the pollen population even from single plants, and thus offers opportunities for selection among male gametophytes. Due to the haploid state and the large population size, male gametophytic selection (MGS) can be extremely efficient and represent an important factor in the high evolution rate of Angiosperms. Moreover, if used in a controlled way, it can be a powerful tool for manipulating the genetic makeup of many useful plant species. Prerequisites for this to occur are: i) that a considerable amount of genes are expressed postmeiotically, thus producing a large number of pollen phenotypes, and ii) that many of these genes are expressed also in the sporophytic phase. Only in this latter case MGS is expected to exert a significant effect on the resulting sporophytic generation. |
7 | ″ | schema:editor | N766c8c11c2444687a8c3f1cc9722ce53 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Na218786028d947169eb4bc7734b28723 |
12 | ″ | schema:keywords | allelic segregation |
13 | ″ | ″ | amount |
14 | ″ | ″ | angiosperms |
15 | ″ | ″ | considerable amount |
16 | ″ | ″ | considerable genetic variability |
17 | ″ | ″ | development |
18 | ″ | ″ | effect |
19 | ″ | ″ | evolution rate |
20 | ″ | ″ | expression |
21 | ″ | ″ | factors |
22 | ″ | ″ | gametophytes |
23 | ″ | ″ | gametophytic selection |
24 | ″ | ″ | gene expression |
25 | ″ | ″ | generation |
26 | ″ | ″ | genes |
27 | ″ | ″ | genetic makeup |
28 | ″ | ″ | genetic variability |
29 | ″ | ″ | haploid state |
30 | ″ | ″ | high evolution rate |
31 | ″ | ″ | important factor |
32 | ″ | ″ | large number |
33 | ″ | ″ | large population sizes |
34 | ″ | ″ | makeup |
35 | ″ | ″ | male gametophyte |
36 | ″ | ″ | male gametophytic selection |
37 | ″ | ″ | meiosis |
38 | ″ | ″ | meiotic gene expression |
39 | ″ | ″ | number |
40 | ″ | ″ | opportunities |
41 | ″ | ″ | phase |
42 | ″ | ″ | phenotype |
43 | ″ | ″ | plant species |
44 | ″ | ″ | plants |
45 | ″ | ″ | pollen development |
46 | ″ | ″ | pollen phenotype |
47 | ″ | ″ | pollen populations |
48 | ″ | ″ | population |
49 | ″ | ″ | population size |
50 | ″ | ″ | powerful tool |
51 | ″ | ″ | prerequisite |
52 | ″ | ″ | rate |
53 | ″ | ″ | segregation |
54 | ″ | ″ | selection |
55 | ″ | ″ | significant effect |
56 | ″ | ″ | single plant |
57 | ″ | ″ | size |
58 | ″ | ″ | species |
59 | ″ | ″ | sporophytic generation |
60 | ″ | ″ | sporophytic phase |
61 | ″ | ″ | state |
62 | ″ | ″ | tool |
63 | ″ | ″ | useful plant species |
64 | ″ | ″ | variability |
65 | ″ | ″ | way |
66 | ″ | schema:name | Gene Expression During Pollen Development |
67 | ″ | schema:pagination | 31-39 |
68 | ″ | schema:productId | N43fec5e319644946bc36a05860f11d32 |
69 | ″ | ″ | N6dda7d70aebc4ff8938640bbf03874cf |
70 | ″ | schema:publisher | N4bed010d392e439f82362056df45cde5 |
71 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045768122 |
72 | ″ | ″ | https://doi.org/10.1007/978-3-642-77677-9_3 |
73 | ″ | schema:sdDatePublished | 2022-06-01T22:30 |
74 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
75 | ″ | schema:sdPublisher | Nb99618f847f148518edef3de3c419a39 |
76 | ″ | schema:url | https://doi.org/10.1007/978-3-642-77677-9_3 |
77 | ″ | sgo:license | sg:explorer/license/ |
78 | ″ | sgo:sdDataset | chapters |
79 | ″ | rdf:type | schema:Chapter |
80 | N3651f9619bf4440eb6aa5288d537acd3 | schema:familyName | Tiezzi |
81 | ″ | schema:givenName | Antonio |
82 | ″ | rdf:type | schema:Person |
83 | N43fec5e319644946bc36a05860f11d32 | schema:name | dimensions_id |
84 | ″ | schema:value | pub.1045768122 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | N4bed010d392e439f82362056df45cde5 | schema:name | Springer Nature |
87 | ″ | rdf:type | schema:Organisation |
88 | N6dda7d70aebc4ff8938640bbf03874cf | schema:name | doi |
89 | ″ | schema:value | 10.1007/978-3-642-77677-9_3 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | N766c8c11c2444687a8c3f1cc9722ce53 | rdf:first | Nd56866f62c5646d8b26ed30f05e09de2 |
92 | ″ | rdf:rest | N92bf4a523e404c49b9725d275351e65e |
93 | N92bf4a523e404c49b9725d275351e65e | rdf:first | N3651f9619bf4440eb6aa5288d537acd3 |
94 | ″ | rdf:rest | rdf:nil |
95 | Na218786028d947169eb4bc7734b28723 | schema:isbn | 978-3-642-77677-9 |
96 | ″ | ″ | 978-3-642-77679-3 |
97 | ″ | schema:name | Sexual Plant Reproduction |
98 | ″ | rdf:type | schema:Book |
99 | Nb99618f847f148518edef3de3c419a39 | schema:name | Springer Nature - SN SciGraph project |
100 | ″ | rdf:type | schema:Organization |
101 | Nd56866f62c5646d8b26ed30f05e09de2 | schema:familyName | Cresti |
102 | ″ | schema:givenName | Mauro |
103 | ″ | rdf:type | schema:Person |
104 | Ndc220ddd2e2d4284b7c10cfa70846723 | rdf:first | sg:person.0772033504.06 |
105 | ″ | rdf:rest | Ndc351d3e82cf41dba02431721d5c0ff9 |
106 | Ndc351d3e82cf41dba02431721d5c0ff9 | rdf:first | sg:person.0722026207.12 |
107 | ″ | rdf:rest | rdf:nil |
108 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Biological Sciences |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Genetics |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | sg:person.0722026207.12 | schema:affiliation | grid-institutes:grid.4708.b |
115 | ″ | schema:familyName | Pè |
116 | ″ | schema:givenName | M. E. |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722026207.12 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.0772033504.06 | schema:affiliation | grid-institutes:grid.4708.b |
120 | ″ | schema:familyName | Frova |
121 | ″ | schema:givenName | C. |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772033504.06 |
123 | ″ | rdf:type | schema:Person |
124 | grid-institutes:grid.4708.b | schema:alternateName | Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133, Milano, Italy |
125 | ″ | schema:name | Department of Genetics and Microbiology, University of Milano, Via Celoria 26, 20133, Milano, Italy |
126 | ″ | rdf:type | schema:Organization |