Numerically Stable Fast Transversal Filters for Recursive Least-Squares Adaptive Filtering View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

Dirk T. M. Slock , Thomas Kailath

ABSTRACT

In this paper, a solution is proposed to the long-standing problem of the numerical instability of Fast Recursive Least-Squares Transversal Filter (FTF) algorithms with exponential weighting, which is an important class of algorithms for adaptive filtering. A framework for the analysis of the error propagation in FTF algorithms is first developed; within this framework, we show that the computationally most efficient 7N form is exponentially unstable. However, by introducing redundancy into this algorithm, feedback of numerical errors becomes possible; a judicious choice of the feedback gains then leads to a numerically stable FTF algorithm with complexity 9N. The results are presented for the complex multichannel joint-process filtering problem. More... »

PAGES

605-615

Book

TITLE

Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms

ISBN

978-3-642-75538-5
978-3-642-75536-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-75536-1_49

DOI

http://dx.doi.org/10.1007/978-3-642-75536-1_49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052265355


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering Information Systems Laboratory, Stanford University, 94305, Stanford, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Electrical Engineering Information Systems Laboratory, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slock", 
        "givenName": "Dirk T. M.", 
        "id": "sg:person.015046645205.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015046645205.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering Information Systems Laboratory, Stanford University, 94305, Stanford, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Electrical Engineering Information Systems Laboratory, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kailath", 
        "givenName": "Thomas", 
        "id": "sg:person.01241172730.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241172730.26"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "In this paper, a solution is proposed to the long-standing problem of the numerical instability of Fast Recursive Least-Squares Transversal Filter (FTF) algorithms with exponential weighting, which is an important class of algorithms for adaptive filtering. A framework for the analysis of the error propagation in FTF algorithms is first developed; within this framework, we show that the computationally most efficient 7N form is exponentially unstable. However, by introducing redundancy into this algorithm, feedback of numerical errors becomes possible; a judicious choice of the feedback gains then leads to a numerically stable FTF algorithm with complexity 9N. The results are presented for the complex multichannel joint-process filtering problem.", 
    "editor": [
      {
        "familyName": "Golub", 
        "givenName": "Gene H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Van Dooren", 
        "givenName": "Paul", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-75536-1_49", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-75538-5", 
        "978-3-642-75536-1"
      ], 
      "name": "Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms", 
      "type": "Book"
    }, 
    "keywords": [
      "FTF algorithm", 
      "stable fast transversal filters", 
      "adaptive filtering", 
      "fast transversal filter", 
      "Recursive Least-Squares Adaptive Filtering", 
      "algorithm", 
      "error propagation", 
      "exponential weighting", 
      "transversal filter", 
      "filtering problem", 
      "filtering", 
      "feedback gains", 
      "numerical instability", 
      "numerical errors", 
      "framework", 
      "important class", 
      "redundancy", 
      "filter", 
      "problem", 
      "judicious choice", 
      "error", 
      "feedback", 
      "weighting", 
      "solution", 
      "class", 
      "gain", 
      "results", 
      "propagation", 
      "choice", 
      "form", 
      "analysis", 
      "instability", 
      "paper", 
      "Fast Recursive Least-Squares Transversal Filter", 
      "Recursive Least-Squares Transversal Filter", 
      "Least-Squares Transversal Filter", 
      "efficient 7N form", 
      "stable FTF algorithm", 
      "complexity 9N.", 
      "complex multichannel joint-process filtering problem", 
      "multichannel joint-process filtering problem", 
      "joint-process filtering problem", 
      "Least-Squares Adaptive Filtering"
    ], 
    "name": "Numerically Stable Fast Transversal Filters for Recursive Least-Squares Adaptive Filtering", 
    "pagination": "605-615", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052265355"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-75536-1_49"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-75536-1_49", 
      "https://app.dimensions.ai/details/publication/pub.1052265355"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_26.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-75536-1_49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-75536-1_49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-75536-1_49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-75536-1_49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-75536-1_49'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      23 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-75536-1_49 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N8ed01a7b3f1744ed80d9eae62809e023
4 schema:datePublished 1991
5 schema:datePublishedReg 1991-01-01
6 schema:description In this paper, a solution is proposed to the long-standing problem of the numerical instability of Fast Recursive Least-Squares Transversal Filter (FTF) algorithms with exponential weighting, which is an important class of algorithms for adaptive filtering. A framework for the analysis of the error propagation in FTF algorithms is first developed; within this framework, we show that the computationally most efficient 7N form is exponentially unstable. However, by introducing redundancy into this algorithm, feedback of numerical errors becomes possible; a judicious choice of the feedback gains then leads to a numerically stable FTF algorithm with complexity 9N. The results are presented for the complex multichannel joint-process filtering problem.
7 schema:editor Needc076237124bffaf9ce16f72752b8d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1e71ec93ea154c37b1cf8a7f74a3e24f
12 schema:keywords FTF algorithm
13 Fast Recursive Least-Squares Transversal Filter
14 Least-Squares Adaptive Filtering
15 Least-Squares Transversal Filter
16 Recursive Least-Squares Adaptive Filtering
17 Recursive Least-Squares Transversal Filter
18 adaptive filtering
19 algorithm
20 analysis
21 choice
22 class
23 complex multichannel joint-process filtering problem
24 complexity 9N.
25 efficient 7N form
26 error
27 error propagation
28 exponential weighting
29 fast transversal filter
30 feedback
31 feedback gains
32 filter
33 filtering
34 filtering problem
35 form
36 framework
37 gain
38 important class
39 instability
40 joint-process filtering problem
41 judicious choice
42 multichannel joint-process filtering problem
43 numerical errors
44 numerical instability
45 paper
46 problem
47 propagation
48 redundancy
49 results
50 solution
51 stable FTF algorithm
52 stable fast transversal filters
53 transversal filter
54 weighting
55 schema:name Numerically Stable Fast Transversal Filters for Recursive Least-Squares Adaptive Filtering
56 schema:pagination 605-615
57 schema:productId Nb2b66f349bec43c6a4ccd77e1a73c0a5
58 Nff089d73ede5403380e3ed9e1cfa89a3
59 schema:publisher N33c4622d5bc54b91b8b4195c78e4a691
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052265355
61 https://doi.org/10.1007/978-3-642-75536-1_49
62 schema:sdDatePublished 2022-01-01T19:15
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N2a011db9424b4112bac67d92be5f8bfb
65 schema:url https://doi.org/10.1007/978-3-642-75536-1_49
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N0c21093f8c3546849b8d985c86aa0e2c rdf:first sg:person.01241172730.26
70 rdf:rest rdf:nil
71 N1e71ec93ea154c37b1cf8a7f74a3e24f schema:isbn 978-3-642-75536-1
72 978-3-642-75538-5
73 schema:name Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms
74 rdf:type schema:Book
75 N2a011db9424b4112bac67d92be5f8bfb schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N33c4622d5bc54b91b8b4195c78e4a691 schema:name Springer Nature
78 rdf:type schema:Organisation
79 N4b0db2c3539e4b4ca53df5b6968029b7 rdf:first N5b64f6614aab437582b9efdf1577afd0
80 rdf:rest rdf:nil
81 N5b64f6614aab437582b9efdf1577afd0 schema:familyName Van Dooren
82 schema:givenName Paul
83 rdf:type schema:Person
84 N8ed01a7b3f1744ed80d9eae62809e023 rdf:first sg:person.015046645205.37
85 rdf:rest N0c21093f8c3546849b8d985c86aa0e2c
86 Nb2b66f349bec43c6a4ccd77e1a73c0a5 schema:name doi
87 schema:value 10.1007/978-3-642-75536-1_49
88 rdf:type schema:PropertyValue
89 Nc6c13b0c0866425c8999758451c17182 schema:familyName Golub
90 schema:givenName Gene H.
91 rdf:type schema:Person
92 Needc076237124bffaf9ce16f72752b8d rdf:first Nc6c13b0c0866425c8999758451c17182
93 rdf:rest N4b0db2c3539e4b4ca53df5b6968029b7
94 Nff089d73ede5403380e3ed9e1cfa89a3 schema:name dimensions_id
95 schema:value pub.1052265355
96 rdf:type schema:PropertyValue
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
101 schema:name Computation Theory and Mathematics
102 rdf:type schema:DefinedTerm
103 sg:person.01241172730.26 schema:affiliation grid-institutes:grid.168010.e
104 schema:familyName Kailath
105 schema:givenName Thomas
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241172730.26
107 rdf:type schema:Person
108 sg:person.015046645205.37 schema:affiliation grid-institutes:grid.168010.e
109 schema:familyName Slock
110 schema:givenName Dirk T. M.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015046645205.37
112 rdf:type schema:Person
113 grid-institutes:grid.168010.e schema:alternateName Department of Electrical Engineering Information Systems Laboratory, Stanford University, 94305, Stanford, CA, USA
114 schema:name Department of Electrical Engineering Information Systems Laboratory, Stanford University, 94305, Stanford, CA, USA
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...