Random-Exchange and Random-Field xy- Chain for S=1/2 View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

T. Schneider , A. Politi

ABSTRACT

Although spin-glass and random-field behavior has been observed in a wide variety of different systems, the identification of universal properties is still disputed [1]. Adopting a quantum statistical point of view, the universal features are hidden in the density of states and the localization properties of the wave functions. In this work, we investigate density of states and localization length of wave functions in an s = ½ xy-chain for random exchange and random field. Using the transformation to spinless fermions [2], the problem is then reduced to a nonlinear map, providing accurate estimates for integrated density of states and exponential localization length of the wave functions. The thermodynamics can be obtained from the density of states since the spinless fermions are free. The results clearly reveal: (i) The appearance of disorder-induced exponential tails in the integrated density of states at the bottom and top of the spectrum. These tails lead to a characteristic field dependence of the zero-temperature magnetization and susceptibility. (ii) Important differences between the random-exchange and random-field models. In the random-exchange case, the state in the middle of the band is found to be extended and the zero-field susceptibility diverges, while in the random-field case, corresponding to the Anderson model [3], all states are exponentially localized and the zero-field susceptibility remains finite. This difference also affects the leading temperature dependence of the zero-field susceptibility and specific heat as T → O. More... »

PAGES

49-54

References to SciGraph publications

  • 1985-01. Lifschitz tails for the Anderson model in JOURNAL OF STATISTICAL PHYSICS
  • Book

    TITLE

    Magnetic Excitations and Fluctuations II

    ISBN

    978-3-642-73109-9
    978-3-642-73107-5

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-73107-5_11

    DOI

    http://dx.doi.org/10.1007/978-3-642-73107-5_11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015117671


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "IBM Research - Zurich", 
              "id": "https://www.grid.ac/institutes/grid.410387.9", 
              "name": [
                "IBM Research Division, Zurich Research Laboratory, CH-8803\u00a0R\u00fcschlikon, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schneider", 
            "givenName": "T.", 
            "id": "sg:person.0732105327.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732105327.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Research - Zurich", 
              "id": "https://www.grid.ac/institutes/grid.410387.9", 
              "name": [
                "IBM Research Division, Zurich Research Laboratory, CH-8803\u00a0R\u00fcschlikon, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Politi", 
            "givenName": "A.", 
            "id": "sg:person.013264105675.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0370-1573(74)90029-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032536411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-1573(74)90029-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032536411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(61)90115-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039019843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01017848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044666877", 
              "https://doi.org/10.1007/bf01017848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.18.569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060524587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.18.569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060524587"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987", 
        "datePublishedReg": "1987-01-01", 
        "description": "Although spin-glass and random-field behavior has been observed in a wide variety of different systems, the identification of universal properties is still disputed [1]. Adopting a quantum statistical point of view, the universal features are hidden in the density of states and the localization properties of the wave functions. In this work, we investigate density of states and localization length of wave functions in an s = \u00bd xy-chain for random exchange and random field. Using the transformation to spinless fermions [2], the problem is then reduced to a nonlinear map, providing accurate estimates for integrated density of states and exponential localization length of the wave functions. The thermodynamics can be obtained from the density of states since the spinless fermions are free. The results clearly reveal: (i) The appearance of disorder-induced exponential tails in the integrated density of states at the bottom and top of the spectrum. These tails lead to a characteristic field dependence of the zero-temperature magnetization and susceptibility. (ii) Important differences between the random-exchange and random-field models. In the random-exchange case, the state in the middle of the band is found to be extended and the zero-field susceptibility diverges, while in the random-field case, corresponding to the Anderson model [3], all states are exponentially localized and the zero-field susceptibility remains finite. This difference also affects the leading temperature dependence of the zero-field susceptibility and specific heat as T \u2192 O.", 
        "editor": [
          {
            "familyName": "Balucani", 
            "givenName": "Umberto", 
            "type": "Person"
          }, 
          {
            "familyName": "Lovesey", 
            "givenName": "Stephen W.", 
            "type": "Person"
          }, 
          {
            "familyName": "Rasetti", 
            "givenName": "Mario G.", 
            "type": "Person"
          }, 
          {
            "familyName": "Tognetti", 
            "givenName": "Valerio", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-73107-5_11", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-73109-9", 
            "978-3-642-73107-5"
          ], 
          "name": "Magnetic Excitations and Fluctuations II", 
          "type": "Book"
        }, 
        "name": "Random-Exchange and Random-Field xy- Chain for S=1/2", 
        "pagination": "49-54", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-73107-5_11"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4806bfcd295ac2bab9dca8676bc3a2c394c32389e20f7e2b8d71b4dec3ca6dbf"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015117671"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-73107-5_11", 
          "https://app.dimensions.ai/details/publication/pub.1015117671"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T14:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000252.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-73107-5_11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-73107-5_11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-73107-5_11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-73107-5_11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-73107-5_11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    100 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-73107-5_11 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Na07a3abbf4ce43cc865450002269d0c4
    4 schema:citation sg:pub.10.1007/bf01017848
    5 https://doi.org/10.1016/0003-4916(61)90115-4
    6 https://doi.org/10.1016/0370-1573(74)90029-5
    7 https://doi.org/10.1103/physrevb.18.569
    8 schema:datePublished 1987
    9 schema:datePublishedReg 1987-01-01
    10 schema:description Although spin-glass and random-field behavior has been observed in a wide variety of different systems, the identification of universal properties is still disputed [1]. Adopting a quantum statistical point of view, the universal features are hidden in the density of states and the localization properties of the wave functions. In this work, we investigate density of states and localization length of wave functions in an s = ½ xy-chain for random exchange and random field. Using the transformation to spinless fermions [2], the problem is then reduced to a nonlinear map, providing accurate estimates for integrated density of states and exponential localization length of the wave functions. The thermodynamics can be obtained from the density of states since the spinless fermions are free. The results clearly reveal: (i) The appearance of disorder-induced exponential tails in the integrated density of states at the bottom and top of the spectrum. These tails lead to a characteristic field dependence of the zero-temperature magnetization and susceptibility. (ii) Important differences between the random-exchange and random-field models. In the random-exchange case, the state in the middle of the band is found to be extended and the zero-field susceptibility diverges, while in the random-field case, corresponding to the Anderson model [3], all states are exponentially localized and the zero-field susceptibility remains finite. This difference also affects the leading temperature dependence of the zero-field susceptibility and specific heat as T → O.
    11 schema:editor N31d7bf5c38aa432b961f6ea165370514
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N2d84163e99a74485bb71193883a8a362
    16 schema:name Random-Exchange and Random-Field xy- Chain for S=1/2
    17 schema:pagination 49-54
    18 schema:productId N17344fe1fddd483cb2afc945910a9b5b
    19 N3d5dcdb296534906930bfb71aa1c85de
    20 Nb5d3263554644d3da8f6f82517a1ff9e
    21 schema:publisher Nc39280c756f646628fb0381424669ed0
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015117671
    23 https://doi.org/10.1007/978-3-642-73107-5_11
    24 schema:sdDatePublished 2019-04-15T14:23
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Nc4a9a06d399e406fa64d307baf5bc826
    27 schema:url http://link.springer.com/10.1007/978-3-642-73107-5_11
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N005089e1f60b40349a31e87f94b438ec rdf:first sg:person.013264105675.78
    32 rdf:rest rdf:nil
    33 N17344fe1fddd483cb2afc945910a9b5b schema:name dimensions_id
    34 schema:value pub.1015117671
    35 rdf:type schema:PropertyValue
    36 N247489b2e10142afac3f9163df367555 rdf:first Nd90744ed6f284c25b557c318fa4242fc
    37 rdf:rest N66a3731eab62453f8a312c3d39bebe2c
    38 N2d84163e99a74485bb71193883a8a362 schema:isbn 978-3-642-73107-5
    39 978-3-642-73109-9
    40 schema:name Magnetic Excitations and Fluctuations II
    41 rdf:type schema:Book
    42 N31d7bf5c38aa432b961f6ea165370514 rdf:first Nd38c42267cb54d3badbe42614b33c4f2
    43 rdf:rest Na181994577e340e99d17ef658d83e0a5
    44 N3d5dcdb296534906930bfb71aa1c85de schema:name doi
    45 schema:value 10.1007/978-3-642-73107-5_11
    46 rdf:type schema:PropertyValue
    47 N430c2664980947b8842212b0a655c66f schema:familyName Tognetti
    48 schema:givenName Valerio
    49 rdf:type schema:Person
    50 N66a3731eab62453f8a312c3d39bebe2c rdf:first N430c2664980947b8842212b0a655c66f
    51 rdf:rest rdf:nil
    52 N6e2c5ccbb8f34a128ee3c3aba0e35d35 schema:familyName Lovesey
    53 schema:givenName Stephen W.
    54 rdf:type schema:Person
    55 Na07a3abbf4ce43cc865450002269d0c4 rdf:first sg:person.0732105327.55
    56 rdf:rest N005089e1f60b40349a31e87f94b438ec
    57 Na181994577e340e99d17ef658d83e0a5 rdf:first N6e2c5ccbb8f34a128ee3c3aba0e35d35
    58 rdf:rest N247489b2e10142afac3f9163df367555
    59 Nb5d3263554644d3da8f6f82517a1ff9e schema:name readcube_id
    60 schema:value 4806bfcd295ac2bab9dca8676bc3a2c394c32389e20f7e2b8d71b4dec3ca6dbf
    61 rdf:type schema:PropertyValue
    62 Nc39280c756f646628fb0381424669ed0 schema:location Berlin, Heidelberg
    63 schema:name Springer Berlin Heidelberg
    64 rdf:type schema:Organisation
    65 Nc4a9a06d399e406fa64d307baf5bc826 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 Nd38c42267cb54d3badbe42614b33c4f2 schema:familyName Balucani
    68 schema:givenName Umberto
    69 rdf:type schema:Person
    70 Nd90744ed6f284c25b557c318fa4242fc schema:familyName Rasetti
    71 schema:givenName Mario G.
    72 rdf:type schema:Person
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Statistics
    78 rdf:type schema:DefinedTerm
    79 sg:person.013264105675.78 schema:affiliation https://www.grid.ac/institutes/grid.410387.9
    80 schema:familyName Politi
    81 schema:givenName A.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78
    83 rdf:type schema:Person
    84 sg:person.0732105327.55 schema:affiliation https://www.grid.ac/institutes/grid.410387.9
    85 schema:familyName Schneider
    86 schema:givenName T.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732105327.55
    88 rdf:type schema:Person
    89 sg:pub.10.1007/bf01017848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044666877
    90 https://doi.org/10.1007/bf01017848
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/0003-4916(61)90115-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039019843
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/0370-1573(74)90029-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032536411
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1103/physrevb.18.569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060524587
    97 rdf:type schema:CreativeWork
    98 https://www.grid.ac/institutes/grid.410387.9 schema:alternateName IBM Research - Zurich
    99 schema:name IBM Research Division, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland
    100 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...