Classical Non-Linear σ-Models on Grassmann Manifolds View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

J.-P. Antoine , B. Piette

ABSTRACT

Roughly speaking, a classical σ-model consists of a 2-dimensional field Ф constrained to live on a manifold M, but otherwise free, Ф: ℝ2 → M, where ℝ2 carries either an Euclidean or a Minkowskian metric. The most interesting models correspond to manifolds M that are (pseudo-) Riemannian symmetric spaces, and we will concentrate on those. For convenience, we repeat here briefly the main definitions. More... »

PAGES

191-195

References to SciGraph publications

Book

TITLE

Recent Developments in Mathematical Physics

ISBN

978-3-642-73106-8
978-3-642-73104-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-73104-4_10

DOI

http://dx.doi.org/10.1007/978-3-642-73104-4_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053571608


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Catholique de Louvain", 
          "id": "https://www.grid.ac/institutes/grid.7942.8", 
          "name": [
            "Institut de Physique Th\u00e9orique, Universit\u00e9 Catholique de Louvain, B-1348\u00a0Louvain-la-Neuve, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antoine", 
        "givenName": "J.-P.", 
        "id": "sg:person.012056701725.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012056701725.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Catholique de Louvain", 
          "id": "https://www.grid.ac/institutes/grid.7942.8", 
          "name": [
            "Institut de Physique Th\u00e9orique, Universit\u00e9 Catholique de Louvain, B-1348\u00a0Louvain-la-Neuve, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piette", 
        "givenName": "B.", 
        "id": "sg:person.014121444104.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01210726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052011970", 
          "https://doi.org/10.1007/bf01210726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052011970", 
          "https://doi.org/10.1007/bf01210726"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987", 
    "datePublishedReg": "1987-01-01", 
    "description": "Roughly speaking, a classical \u03c3-model consists of a 2-dimensional field \u0424 constrained to live on a manifold M, but otherwise free, \u0424: \u211d2 \u2192 M, where \u211d2 carries either an Euclidean or a Minkowskian metric. The most interesting models correspond to manifolds M that are (pseudo-) Riemannian symmetric spaces, and we will concentrate on those. For convenience, we repeat here briefly the main definitions.", 
    "editor": [
      {
        "familyName": "Mitter", 
        "givenName": "Heinrich", 
        "type": "Person"
      }, 
      {
        "familyName": "Pittner", 
        "givenName": "Ludwig", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-73104-4_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-73106-8", 
        "978-3-642-73104-4"
      ], 
      "name": "Recent Developments in Mathematical Physics", 
      "type": "Book"
    }, 
    "name": "Classical Non-Linear \u03c3-Models on Grassmann Manifolds", 
    "pagination": "191-195", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-73104-4_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ff2b1993a114fb9783e1e080750cda5c0e913be6d6484b4fb347fccdab4feca1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053571608"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-73104-4_10", 
      "https://app.dimensions.ai/details/publication/pub.1053571608"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000276.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-73104-4_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-73104-4_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-73104-4_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-73104-4_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-73104-4_10'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-73104-4_10 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndce99a9cf5bb48d990f00cf227b5330d
4 schema:citation sg:pub.10.1007/bf01210726
5 schema:datePublished 1987
6 schema:datePublishedReg 1987-01-01
7 schema:description Roughly speaking, a classical σ-model consists of a 2-dimensional field Ф constrained to live on a manifold M, but otherwise free, Ф: ℝ2 → M, where ℝ2 carries either an Euclidean or a Minkowskian metric. The most interesting models correspond to manifolds M that are (pseudo-) Riemannian symmetric spaces, and we will concentrate on those. For convenience, we repeat here briefly the main definitions.
8 schema:editor N6b9058b41ab349058b3577e971c63850
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N79b749cff8b649609d4c6962a03ba507
13 schema:name Classical Non-Linear σ-Models on Grassmann Manifolds
14 schema:pagination 191-195
15 schema:productId N2664a233e2854c8c911e893ca4d6fe09
16 N294f51037a8a401cafd95ce0e5d186ef
17 Nc22d927164b443f8885b03d83be30121
18 schema:publisher N6d0e98c0656e48caa9bf42a3c62aef5c
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053571608
20 https://doi.org/10.1007/978-3-642-73104-4_10
21 schema:sdDatePublished 2019-04-15T11:38
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N5bee29de0bba4089981af9085edf1834
24 schema:url http://link.springer.com/10.1007/978-3-642-73104-4_10
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N1e4f42b396d8454fb6ba5e2c4d0ec568 schema:familyName Mitter
29 schema:givenName Heinrich
30 rdf:type schema:Person
31 N2664a233e2854c8c911e893ca4d6fe09 schema:name doi
32 schema:value 10.1007/978-3-642-73104-4_10
33 rdf:type schema:PropertyValue
34 N294f51037a8a401cafd95ce0e5d186ef schema:name readcube_id
35 schema:value ff2b1993a114fb9783e1e080750cda5c0e913be6d6484b4fb347fccdab4feca1
36 rdf:type schema:PropertyValue
37 N5bee29de0bba4089981af9085edf1834 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N683288aeb96942b2b05ab637ddd96bb6 rdf:first sg:person.014121444104.73
40 rdf:rest rdf:nil
41 N686329b43b4645bfaf04009bb7ab9b1d schema:familyName Pittner
42 schema:givenName Ludwig
43 rdf:type schema:Person
44 N6b9058b41ab349058b3577e971c63850 rdf:first N1e4f42b396d8454fb6ba5e2c4d0ec568
45 rdf:rest N93bec33d26f248dd878f2648ffc70b8d
46 N6d0e98c0656e48caa9bf42a3c62aef5c schema:location Berlin, Heidelberg
47 schema:name Springer Berlin Heidelberg
48 rdf:type schema:Organisation
49 N79b749cff8b649609d4c6962a03ba507 schema:isbn 978-3-642-73104-4
50 978-3-642-73106-8
51 schema:name Recent Developments in Mathematical Physics
52 rdf:type schema:Book
53 N93bec33d26f248dd878f2648ffc70b8d rdf:first N686329b43b4645bfaf04009bb7ab9b1d
54 rdf:rest rdf:nil
55 Nc22d927164b443f8885b03d83be30121 schema:name dimensions_id
56 schema:value pub.1053571608
57 rdf:type schema:PropertyValue
58 Ndce99a9cf5bb48d990f00cf227b5330d rdf:first sg:person.012056701725.96
59 rdf:rest N683288aeb96942b2b05ab637ddd96bb6
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
64 schema:name Pure Mathematics
65 rdf:type schema:DefinedTerm
66 sg:person.012056701725.96 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
67 schema:familyName Antoine
68 schema:givenName J.-P.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012056701725.96
70 rdf:type schema:Person
71 sg:person.014121444104.73 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
72 schema:familyName Piette
73 schema:givenName B.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
75 rdf:type schema:Person
76 sg:pub.10.1007/bf01210726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052011970
77 https://doi.org/10.1007/bf01210726
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.7942.8 schema:alternateName Université Catholique de Louvain
80 schema:name Institut de Physique Théorique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...