Generalized Distance Measures for Asymmetric Multivariate Distributions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

Marco Riani , Sergio Zani

ABSTRACT

1In this paper we suggest a non parametric generalization of the Mahalanobis distance which enables to take into account the differing spread of the data in the different directions. The output is an easy to handle metric which can be conveniently used both in an exploratory stage of the analysis for the detection of multivariate outliers and successively as a tool for non parametric discriminant analysis, multidimensional scaling and cluster analysis. In addition, the use of this metric can provide information about multivariate transformations and multiple outliers. More... »

PAGES

503-508

References to SciGraph publications

  • 1998. Robust Bivariate Boxplots and Visualization of Multivariate Data in CLASSIFICATION, DATA ANALYSIS, AND DATA HIGHWAYS
  • Book

    TITLE

    Advances in Data Science and Classification

    ISBN

    978-3-540-64641-9
    978-3-642-72253-0

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-72253-0_68

    DOI

    http://dx.doi.org/10.1007/978-3-642-72253-0_68

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043338662


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Econometrics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Parma", 
              "id": "https://www.grid.ac/institutes/grid.10383.39", 
              "name": [
                "Istituto di Statistica, Facolt\u00e0 di Economia, Univ. of Parma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Riani", 
            "givenName": "Marco", 
            "id": "sg:person.012664543761.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012664543761.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Parma", 
              "id": "https://www.grid.ac/institutes/grid.10383.39", 
              "name": [
                "Istituto di Statistica, Facolt\u00e0 di Economia, Univ. of Parma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zani", 
            "givenName": "Sergio", 
            "id": "sg:person.011440711041.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011440711041.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0167-9473(98)00040-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000460920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-72087-1_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002958164", 
              "https://doi.org/10.1007/978-3-642-72087-1_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1099-095x(199711/12)8:6<583::aid-env277>3.0.co;2-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025959085"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998", 
        "datePublishedReg": "1998-01-01", 
        "description": "1In this paper we suggest a non parametric generalization of the Mahalanobis distance which enables to take into account the differing spread of the data in the different directions. The output is an easy to handle metric which can be conveniently used both in an exploratory stage of the analysis for the detection of multivariate outliers and successively as a tool for non parametric discriminant analysis, multidimensional scaling and cluster analysis. In addition, the use of this metric can provide information about multivariate transformations and multiple outliers.", 
        "editor": [
          {
            "familyName": "Rizzi", 
            "givenName": "Alfredo", 
            "type": "Person"
          }, 
          {
            "familyName": "Vichi", 
            "givenName": "Maurizio", 
            "type": "Person"
          }, 
          {
            "familyName": "Bock", 
            "givenName": "Hans-Hermann", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-72253-0_68", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-64641-9", 
            "978-3-642-72253-0"
          ], 
          "name": "Advances in Data Science and Classification", 
          "type": "Book"
        }, 
        "name": "Generalized Distance Measures for Asymmetric Multivariate Distributions", 
        "pagination": "503-508", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-72253-0_68"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ce7068b003237892f1fccc9d82a6c684f660ed5c07ff3f5a5c0c4a2a556d7ba9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043338662"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-72253-0_68", 
          "https://app.dimensions.ai/details/publication/pub.1043338662"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T12:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000270.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-72253-0_68"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-72253-0_68'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-72253-0_68'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-72253-0_68'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-72253-0_68'


     

    This table displays all metadata directly associated to this object as RDF triples.

    92 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-72253-0_68 schema:about anzsrc-for:14
    2 anzsrc-for:1403
    3 schema:author N9ed6e6a2376d4d3ebc1536de736fb202
    4 schema:citation sg:pub.10.1007/978-3-642-72087-1_11
    5 https://doi.org/10.1002/(sici)1099-095x(199711/12)8:6<583::aid-env277>3.0.co;2-l
    6 https://doi.org/10.1016/s0167-9473(98)00040-1
    7 schema:datePublished 1998
    8 schema:datePublishedReg 1998-01-01
    9 schema:description 1In this paper we suggest a non parametric generalization of the Mahalanobis distance which enables to take into account the differing spread of the data in the different directions. The output is an easy to handle metric which can be conveniently used both in an exploratory stage of the analysis for the detection of multivariate outliers and successively as a tool for non parametric discriminant analysis, multidimensional scaling and cluster analysis. In addition, the use of this metric can provide information about multivariate transformations and multiple outliers.
    10 schema:editor N837283d48ce94a32920867eb4b81776b
    11 schema:genre chapter
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N73b8647a51af4ce29af17c52919b48f5
    15 schema:name Generalized Distance Measures for Asymmetric Multivariate Distributions
    16 schema:pagination 503-508
    17 schema:productId N576c98c8665f463a91517c7e440305d0
    18 Ndf68a6c4401c4f23bf77d8ad2365e771
    19 Ne1329b6fe2194c839d7968becdc8d393
    20 schema:publisher N25fa7e6bf4fa4d28b7e8410a79c23f39
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043338662
    22 https://doi.org/10.1007/978-3-642-72253-0_68
    23 schema:sdDatePublished 2019-04-15T12:34
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher Nb3444b128ca84c97bbd96929cf7f63cc
    26 schema:url http://link.springer.com/10.1007/978-3-642-72253-0_68
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset chapters
    29 rdf:type schema:Chapter
    30 N20a767e10d4f4c48800976aad538dd04 rdf:first Ned3eb7d3e2fd40cfaf9e2e542ac5975e
    31 rdf:rest rdf:nil
    32 N25fa7e6bf4fa4d28b7e8410a79c23f39 schema:location Berlin, Heidelberg
    33 schema:name Springer Berlin Heidelberg
    34 rdf:type schema:Organisation
    35 N576c98c8665f463a91517c7e440305d0 schema:name readcube_id
    36 schema:value ce7068b003237892f1fccc9d82a6c684f660ed5c07ff3f5a5c0c4a2a556d7ba9
    37 rdf:type schema:PropertyValue
    38 N73b8647a51af4ce29af17c52919b48f5 schema:isbn 978-3-540-64641-9
    39 978-3-642-72253-0
    40 schema:name Advances in Data Science and Classification
    41 rdf:type schema:Book
    42 N7a8b6562a2404bb489075a5b100c9ee4 schema:familyName Rizzi
    43 schema:givenName Alfredo
    44 rdf:type schema:Person
    45 N7cf2cef9546d4020a0327907cf3cd3c0 schema:familyName Vichi
    46 schema:givenName Maurizio
    47 rdf:type schema:Person
    48 N837283d48ce94a32920867eb4b81776b rdf:first N7a8b6562a2404bb489075a5b100c9ee4
    49 rdf:rest Na7ef8ed96c5641d18970405f6eeecd40
    50 N9ed6e6a2376d4d3ebc1536de736fb202 rdf:first sg:person.012664543761.06
    51 rdf:rest Nacf45c8b4a8c4e819652423839387a13
    52 Na7ef8ed96c5641d18970405f6eeecd40 rdf:first N7cf2cef9546d4020a0327907cf3cd3c0
    53 rdf:rest N20a767e10d4f4c48800976aad538dd04
    54 Nacf45c8b4a8c4e819652423839387a13 rdf:first sg:person.011440711041.07
    55 rdf:rest rdf:nil
    56 Nb3444b128ca84c97bbd96929cf7f63cc schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Ndf68a6c4401c4f23bf77d8ad2365e771 schema:name doi
    59 schema:value 10.1007/978-3-642-72253-0_68
    60 rdf:type schema:PropertyValue
    61 Ne1329b6fe2194c839d7968becdc8d393 schema:name dimensions_id
    62 schema:value pub.1043338662
    63 rdf:type schema:PropertyValue
    64 Ned3eb7d3e2fd40cfaf9e2e542ac5975e schema:familyName Bock
    65 schema:givenName Hans-Hermann
    66 rdf:type schema:Person
    67 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Economics
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Econometrics
    72 rdf:type schema:DefinedTerm
    73 sg:person.011440711041.07 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
    74 schema:familyName Zani
    75 schema:givenName Sergio
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011440711041.07
    77 rdf:type schema:Person
    78 sg:person.012664543761.06 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
    79 schema:familyName Riani
    80 schema:givenName Marco
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012664543761.06
    82 rdf:type schema:Person
    83 sg:pub.10.1007/978-3-642-72087-1_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002958164
    84 https://doi.org/10.1007/978-3-642-72087-1_11
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1002/(sici)1099-095x(199711/12)8:6<583::aid-env277>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1025959085
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/s0167-9473(98)00040-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000460920
    89 rdf:type schema:CreativeWork
    90 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
    91 schema:name Istituto di Statistica, Facoltà di Economia, Univ. of Parma, Italy
    92 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...