Finitely Generated Vector Sublattices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

Charles B. Huijsmans

ABSTRACT

Let E+ be the positive cone of an Archimedean vector lattice E. It is shown in [4, Theorem 2.1] that for arbitrary u, v ∈ E+ the vector sublattice R(u, v) of E generated by u and v can be described as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R\left( {u,\upsilon } \right) = Span\left\{ {{{{\left( {\alpha u + \beta \upsilon } \right)}}^{ + }}:\alpha \beta \in \mathbb{R}} \right\}. $$\end{document}.We will demonstrate in this paper that this result no longer holds for three or more positive elements. It also ceases to be true for the vector sublattice generated by two (or more) arbitrary elements. Moreover, we will show that every finitely generated vector sublattice of E is finite-dimensional if and only if E is hyper-Archimedean. More... »

PAGES

79-95

Book

TITLE

Functional Analysis and Economic Theory

ISBN

978-3-642-72224-0
978-3-642-72222-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-72222-6_7

DOI

http://dx.doi.org/10.1007/978-3-642-72222-6_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019422947


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Leiden University, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "Department of Mathematics, Leiden University, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huijsmans", 
        "givenName": "Charles B.", 
        "id": "sg:person.016563503535.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016563503535.83"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "Let E+ be the positive cone of an Archimedean vector lattice E. It is shown in [4, Theorem 2.1] that for arbitrary u, v \u2208 E+ the vector sublattice R(u, v) of E generated by u and v can be described as follows:\n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ R\\left( {u,\\upsilon } \\right) = Span\\left\\{ {{{{\\left( {\\alpha u + \\beta \\upsilon } \\right)}}^{ + }}:\\alpha \\beta  \\in \\mathbb{R}} \\right\\}. $$\\end{document}.We will demonstrate in this paper that this result no longer holds for three or more positive elements. It also ceases to be true for the vector sublattice generated by two (or more) arbitrary elements. Moreover, we will show that every finitely generated vector sublattice of E is finite-dimensional if and only if E is hyper-Archimedean.", 
    "editor": [
      {
        "familyName": "Abramovich", 
        "givenName": "Yuri", 
        "type": "Person"
      }, 
      {
        "familyName": "Avgerinos", 
        "givenName": "Evgenios", 
        "type": "Person"
      }, 
      {
        "familyName": "Yannelis", 
        "givenName": "Nicholas C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-72222-6_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-72224-0", 
        "978-3-642-72222-6"
      ], 
      "name": "Functional Analysis and Economic Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "e.", 
      "results", 
      "cone", 
      "positive elements", 
      "elements", 
      "paper", 
      "positive cone", 
      "arbitrary elements", 
      "sublattice", 
      "vector sublattice", 
      "Archimedean vector lattice E.", 
      "vector lattice E.", 
      "lattice E."
    ], 
    "name": "Finitely Generated Vector Sublattices", 
    "pagination": "79-95", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019422947"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-72222-6_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-72222-6_7", 
      "https://app.dimensions.ai/details/publication/pub.1019422947"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_86.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-72222-6_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-72222-6_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-72222-6_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-72222-6_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-72222-6_7'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      23 PREDICATES      39 URIs      32 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-72222-6_7 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N9c8b92a1be1f4012affa547e46613621
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description Let E+ be the positive cone of an Archimedean vector lattice E. It is shown in [4, Theorem 2.1] that for arbitrary u, v ∈ E+ the vector sublattice R(u, v) of E generated by u and v can be described as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R\left( {u,\upsilon } \right) = Span\left\{ {{{{\left( {\alpha u + \beta \upsilon } \right)}}^{ + }}:\alpha \beta \in \mathbb{R}} \right\}. $$\end{document}.We will demonstrate in this paper that this result no longer holds for three or more positive elements. It also ceases to be true for the vector sublattice generated by two (or more) arbitrary elements. Moreover, we will show that every finitely generated vector sublattice of E is finite-dimensional if and only if E is hyper-Archimedean.
7 schema:editor N2ca82ce7444a4699811c8eacc9868d45
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N2e7c66ebaa9e4b83a1ed0f05bd1d7741
12 schema:keywords Archimedean vector lattice E.
13 arbitrary elements
14 cone
15 e.
16 elements
17 lattice E.
18 paper
19 positive cone
20 positive elements
21 results
22 sublattice
23 vector lattice E.
24 vector sublattice
25 schema:name Finitely Generated Vector Sublattices
26 schema:pagination 79-95
27 schema:productId N8514fe61f5354c869bd4a27838cf58a3
28 Nd06925a88bb449e7b772724110173690
29 schema:publisher N566051619a2f4aa08b609fcb4d796fcd
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019422947
31 https://doi.org/10.1007/978-3-642-72222-6_7
32 schema:sdDatePublished 2021-12-01T20:13
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N22617132dab34920bb16517231047552
35 schema:url https://doi.org/10.1007/978-3-642-72222-6_7
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N0a87d4b3ead94af1abc4cbb62088ebb7 schema:familyName Abramovich
40 schema:givenName Yuri
41 rdf:type schema:Person
42 N22617132dab34920bb16517231047552 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N2ca82ce7444a4699811c8eacc9868d45 rdf:first N0a87d4b3ead94af1abc4cbb62088ebb7
45 rdf:rest N4ca049f1036d4679818c69f7f1e3df58
46 N2e7c66ebaa9e4b83a1ed0f05bd1d7741 schema:isbn 978-3-642-72222-6
47 978-3-642-72224-0
48 schema:name Functional Analysis and Economic Theory
49 rdf:type schema:Book
50 N4ca049f1036d4679818c69f7f1e3df58 rdf:first Nfaf2a00a4e36467ebeb550f671eacd47
51 rdf:rest Nea8fad85723a4bed883e05014990f05d
52 N566051619a2f4aa08b609fcb4d796fcd schema:name Springer Nature
53 rdf:type schema:Organisation
54 N5718dcf9c3e84ffe9cf01c10b01e2378 schema:familyName Yannelis
55 schema:givenName Nicholas C.
56 rdf:type schema:Person
57 N8514fe61f5354c869bd4a27838cf58a3 schema:name doi
58 schema:value 10.1007/978-3-642-72222-6_7
59 rdf:type schema:PropertyValue
60 N9c8b92a1be1f4012affa547e46613621 rdf:first sg:person.016563503535.83
61 rdf:rest rdf:nil
62 Nd06925a88bb449e7b772724110173690 schema:name dimensions_id
63 schema:value pub.1019422947
64 rdf:type schema:PropertyValue
65 Nea8fad85723a4bed883e05014990f05d rdf:first N5718dcf9c3e84ffe9cf01c10b01e2378
66 rdf:rest rdf:nil
67 Nfaf2a00a4e36467ebeb550f671eacd47 schema:familyName Avgerinos
68 schema:givenName Evgenios
69 rdf:type schema:Person
70 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
71 schema:name Medical and Health Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
74 schema:name Neurosciences
75 rdf:type schema:DefinedTerm
76 sg:person.016563503535.83 schema:affiliation grid-institutes:grid.5132.5
77 schema:familyName Huijsmans
78 schema:givenName Charles B.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016563503535.83
80 rdf:type schema:Person
81 grid-institutes:grid.5132.5 schema:alternateName Department of Mathematics, Leiden University, The Netherlands
82 schema:name Department of Mathematics, Leiden University, The Netherlands
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...