Sound Velocity Measurements on Hydrogen-Doped Niobium in the Superconducting and Normal States View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

W. Morr , G. Weiss , H. Wipf

ABSTRACT

Hydrogen interstitials in niobium, trapped by additional impurities such as nitrogen or oxygen, form tunneling systems with energy splittings E ≈ 2 K. This has been demonstrated by low-temperature specific heat measurements /1,2,3/, by inelastic neutron scattering experiments /4,5/, and also by sound velocity measurements /6/. Additionally, hydrogen tunneling systems give rise to relaxation processes resulting in a peak of the ultrasonic attenuation at 3K if the niobium host is in the superconducting state /7,8,9/. By suppressing superconductivity with a magnetic field this attenuation peak vanishes, proving that the dynamics of the tunneling systems are governed by their interaction with conduction electrons /8,9/. Recently this important role of the conduction electrons has also been verified in inelastic neutron scattering experiments /5/. More... »

PAGES

163-166

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-71914-1_28

DOI

http://dx.doi.org/10.1007/978-3-642-71914-1_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020338817


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Angewandte Physik II, Universit\u00e4t Heidelberg, Albert-\u00dcberle-Str. 3-5, D-6900, Heidelberg, Fed. Rep. of Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Institut f\u00fcr Angewandte Physik II, Universit\u00e4t Heidelberg, Albert-\u00dcberle-Str. 3-5, D-6900, Heidelberg, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morr", 
        "givenName": "W.", 
        "id": "sg:person.011272711645.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011272711645.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Angewandte Physik II, Universit\u00e4t Heidelberg, Albert-\u00dcberle-Str. 3-5, D-6900, Heidelberg, Fed. Rep. of Germany", 
          "id": "http://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Institut f\u00fcr Angewandte Physik II, Universit\u00e4t Heidelberg, Albert-\u00dcberle-Str. 3-5, D-6900, Heidelberg, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "G.", 
        "id": "sg:person.015642655021.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015642655021.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Festk\u00f6rperphysik, Technische Hochschule Darmstadt, Hochschulstr. 2, D-6100, Darmstadt, Fed. Rep. of Germany", 
          "id": "http://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperphysik, Technische Hochschule Darmstadt, Hochschulstr. 2, D-6100, Darmstadt, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wipf", 
        "givenName": "H.", 
        "id": "sg:person.07553115345.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553115345.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987", 
    "datePublishedReg": "1987-01-01", 
    "description": "Hydrogen interstitials in niobium, trapped by additional impurities such as nitrogen or oxygen, form tunneling systems with energy splittings E \u2248 2 K. This has been demonstrated by low-temperature specific heat measurements /1,2,3/, by inelastic neutron scattering experiments /4,5/, and also by sound velocity measurements /6/. Additionally, hydrogen tunneling systems give rise to relaxation processes resulting in a peak of the ultrasonic attenuation at 3K if the niobium host is in the superconducting state /7,8,9/. By suppressing superconductivity with a magnetic field this attenuation peak vanishes, proving that the dynamics of the tunneling systems are governed by their interaction with conduction electrons /8,9/. Recently this important role of the conduction electrons has also been verified in inelastic neutron scattering experiments /5/.", 
    "editor": [
      {
        "familyName": "Heidemann", 
        "givenName": "Anton", 
        "type": "Person"
      }, 
      {
        "familyName": "Magerl", 
        "givenName": "Andreas", 
        "type": "Person"
      }, 
      {
        "familyName": "Richter", 
        "givenName": "Dieter", 
        "type": "Person"
      }, 
      {
        "familyName": "Prager", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Springer", 
        "givenName": "Tasso", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-71914-1_28", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-71916-5", 
        "978-3-642-71914-1"
      ], 
      "name": "Quantum Aspects of Molecular Motions in Solids", 
      "type": "Book"
    }, 
    "keywords": [
      "tunneling systems", 
      "inelastic neutron", 
      "conduction electrons", 
      "sound velocity measurements", 
      "low-temperature specific heat measurements", 
      "specific heat measurements", 
      "velocity measurements", 
      "magnetic field", 
      "relaxation processes", 
      "hydrogen interstitials", 
      "normal state", 
      "heat measurements", 
      "attenuation peak", 
      "neutrons", 
      "electrons", 
      "additional impurities", 
      "ultrasonic attenuation", 
      "measurements", 
      "superconductivity", 
      "superconducting", 
      "peak", 
      "niobium", 
      "state", 
      "impurities", 
      "interstitials", 
      "hydrogen", 
      "field", 
      "experiments", 
      "system", 
      "dynamics", 
      "attenuation", 
      "interaction", 
      "oxygen", 
      "nitrogen", 
      "rise", 
      "process", 
      "important role", 
      "host", 
      "role"
    ], 
    "name": "Sound Velocity Measurements on Hydrogen-Doped Niobium in the Superconducting and Normal States", 
    "pagination": "163-166", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020338817"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-71914-1_28"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-71914-1_28", 
      "https://app.dimensions.ai/details/publication/pub.1020338817"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_398.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-71914-1_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71914-1_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71914-1_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71914-1_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71914-1_28'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-71914-1_28 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N6c207e41bf4248ada9035dbbc01cb376
4 schema:datePublished 1987
5 schema:datePublishedReg 1987-01-01
6 schema:description Hydrogen interstitials in niobium, trapped by additional impurities such as nitrogen or oxygen, form tunneling systems with energy splittings E ≈ 2 K. This has been demonstrated by low-temperature specific heat measurements /1,2,3/, by inelastic neutron scattering experiments /4,5/, and also by sound velocity measurements /6/. Additionally, hydrogen tunneling systems give rise to relaxation processes resulting in a peak of the ultrasonic attenuation at 3K if the niobium host is in the superconducting state /7,8,9/. By suppressing superconductivity with a magnetic field this attenuation peak vanishes, proving that the dynamics of the tunneling systems are governed by their interaction with conduction electrons /8,9/. Recently this important role of the conduction electrons has also been verified in inelastic neutron scattering experiments /5/.
7 schema:editor N66e1fb7d77ba4e8c895a5f9e9a21c659
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9e80d95d9a834358bc92a5e7e48fc1a1
12 schema:keywords additional impurities
13 attenuation
14 attenuation peak
15 conduction electrons
16 dynamics
17 electrons
18 experiments
19 field
20 heat measurements
21 host
22 hydrogen
23 hydrogen interstitials
24 important role
25 impurities
26 inelastic neutron
27 interaction
28 interstitials
29 low-temperature specific heat measurements
30 magnetic field
31 measurements
32 neutrons
33 niobium
34 nitrogen
35 normal state
36 oxygen
37 peak
38 process
39 relaxation processes
40 rise
41 role
42 sound velocity measurements
43 specific heat measurements
44 state
45 superconducting
46 superconductivity
47 system
48 tunneling systems
49 ultrasonic attenuation
50 velocity measurements
51 schema:name Sound Velocity Measurements on Hydrogen-Doped Niobium in the Superconducting and Normal States
52 schema:pagination 163-166
53 schema:productId N0898d8a7a3d54a22a8d68dc858ffa2a2
54 Ne4ef77440f2a4f60a0076e8ddf882821
55 schema:publisher N1ef2992ef1124ef08372c4e8a2e8ad33
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020338817
57 https://doi.org/10.1007/978-3-642-71914-1_28
58 schema:sdDatePublished 2022-05-20T07:47
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nccc5f5b6de8e477695ce33b13ff84bf4
61 schema:url https://doi.org/10.1007/978-3-642-71914-1_28
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N07a0df83ae524c7fb0905a92c65dd8b7 schema:familyName Heidemann
66 schema:givenName Anton
67 rdf:type schema:Person
68 N0898d8a7a3d54a22a8d68dc858ffa2a2 schema:name doi
69 schema:value 10.1007/978-3-642-71914-1_28
70 rdf:type schema:PropertyValue
71 N098633dec9ed40a5a95c28731b082a99 rdf:first sg:person.07553115345.63
72 rdf:rest rdf:nil
73 N0a143c8d88604af88ac18bf0f9f86a00 schema:familyName Prager
74 schema:givenName Michael
75 rdf:type schema:Person
76 N1ef2992ef1124ef08372c4e8a2e8ad33 schema:name Springer Nature
77 rdf:type schema:Organisation
78 N4dbae96b1cbc4a6080e23e5fab8011ac rdf:first sg:person.015642655021.98
79 rdf:rest N098633dec9ed40a5a95c28731b082a99
80 N548ddf499a1f4f49a41ec1447ac87f66 rdf:first Ned9abf20213c4389a549f9e186fbc97a
81 rdf:rest Na7dbaa31bce64d0ab12593de12983f23
82 N5cd6457fc92b450783455a47c43f8579 rdf:first Nc5086fd4904b4b5bb5a256044347367e
83 rdf:rest N548ddf499a1f4f49a41ec1447ac87f66
84 N66e1fb7d77ba4e8c895a5f9e9a21c659 rdf:first N07a0df83ae524c7fb0905a92c65dd8b7
85 rdf:rest N5cd6457fc92b450783455a47c43f8579
86 N6c207e41bf4248ada9035dbbc01cb376 rdf:first sg:person.011272711645.82
87 rdf:rest N4dbae96b1cbc4a6080e23e5fab8011ac
88 N8d7da37bd5604e04ac941487d6dc1544 schema:familyName Springer
89 schema:givenName Tasso
90 rdf:type schema:Person
91 N9e80d95d9a834358bc92a5e7e48fc1a1 schema:isbn 978-3-642-71914-1
92 978-3-642-71916-5
93 schema:name Quantum Aspects of Molecular Motions in Solids
94 rdf:type schema:Book
95 Na7dbaa31bce64d0ab12593de12983f23 rdf:first N0a143c8d88604af88ac18bf0f9f86a00
96 rdf:rest Nd051ad2c142d4a829ea37f0163f87a7d
97 Nc5086fd4904b4b5bb5a256044347367e schema:familyName Magerl
98 schema:givenName Andreas
99 rdf:type schema:Person
100 Nccc5f5b6de8e477695ce33b13ff84bf4 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nd051ad2c142d4a829ea37f0163f87a7d rdf:first N8d7da37bd5604e04ac941487d6dc1544
103 rdf:rest rdf:nil
104 Ne4ef77440f2a4f60a0076e8ddf882821 schema:name dimensions_id
105 schema:value pub.1020338817
106 rdf:type schema:PropertyValue
107 Ned9abf20213c4389a549f9e186fbc97a schema:familyName Richter
108 schema:givenName Dieter
109 rdf:type schema:Person
110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
111 schema:name Chemical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Chemistry (incl. Structural)
115 rdf:type schema:DefinedTerm
116 sg:person.011272711645.82 schema:affiliation grid-institutes:grid.7700.0
117 schema:familyName Morr
118 schema:givenName W.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011272711645.82
120 rdf:type schema:Person
121 sg:person.015642655021.98 schema:affiliation grid-institutes:grid.7700.0
122 schema:familyName Weiss
123 schema:givenName G.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015642655021.98
125 rdf:type schema:Person
126 sg:person.07553115345.63 schema:affiliation grid-institutes:grid.6546.1
127 schema:familyName Wipf
128 schema:givenName H.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553115345.63
130 rdf:type schema:Person
131 grid-institutes:grid.6546.1 schema:alternateName Institut für Festkörperphysik, Technische Hochschule Darmstadt, Hochschulstr. 2, D-6100, Darmstadt, Fed. Rep. of Germany
132 schema:name Institut für Festkörperphysik, Technische Hochschule Darmstadt, Hochschulstr. 2, D-6100, Darmstadt, Fed. Rep. of Germany
133 rdf:type schema:Organization
134 grid-institutes:grid.7700.0 schema:alternateName Institut für Angewandte Physik II, Universität Heidelberg, Albert-Überle-Str. 3-5, D-6900, Heidelberg, Fed. Rep. of Germany
135 schema:name Institut für Angewandte Physik II, Universität Heidelberg, Albert-Überle-Str. 3-5, D-6900, Heidelberg, Fed. Rep. of Germany
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...