The Influence of Electrons on the Tunneling State of a Hydrogen Atom in a Metal View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

H. Wipf , D. Steinbinder , K. Neumaier , P. Gutsmiedl , A. Magerl , A. J. Dianoux

ABSTRACT

The thermal destruction of a tunneling state in a molecular crystal, which becomes observable in a neutron spectroscopic experiment say above 10 K, is generally attributed to interactions with phonons. If the tunnel system is in a metallic environment there is an additional relaxation path originating from the interaction with electrons. We have studied by inelastic neutron scattering the tunneling of a single proton in Nb(OH)x with x = 0.002 and x = 0.0002 from 0.1 to 10 K in both a superconducting and a normal conducting environment (applied magnetic field 0.7 T). These data show that the interaction of the H tunnel state with conduction electrons dominates the observed damping in this temperature range. In addition, different values for the tunnel splitting are found in the superconducting state (Js = 226 μeV) and in the normal conducting state (JN = 206 μeV). This renormalisation and the damping are described consistently by only one coupling parameter K = 0.053. More... »

PAGES

153-157

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-71914-1_26

DOI

http://dx.doi.org/10.1007/978-3-642-71914-1_26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003764139


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Festk\u00f6rperphysik, Technische Hochschule Darmstadt, Hochschulstr. 2, D-6100, Darmstadt, Fed. Rep. of Germany", 
          "id": "http://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperphysik, Technische Hochschule Darmstadt, Hochschulstr. 2, D-6100, Darmstadt, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wipf", 
        "givenName": "H.", 
        "id": "sg:person.07553115345.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553115345.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Festk\u00f6rperphysik, Technische Hochschule Darmstadt, Hochschulstr. 2, D-6100, Darmstadt, Fed. Rep. of Germany", 
          "id": "http://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperphysik, Technische Hochschule Darmstadt, Hochschulstr. 2, D-6100, Darmstadt, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steinbinder", 
        "givenName": "D.", 
        "id": "sg:person.07605444473.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07605444473.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Walther-Meissner-Institut f\u00fcr Tieftemperaturforschung, Walther-Meissner-Str. 8, D-8046, Garching, Fed. Rep. of Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Walther-Meissner-Institut f\u00fcr Tieftemperaturforschung, Walther-Meissner-Str. 8, D-8046, Garching, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumaier", 
        "givenName": "K.", 
        "id": "sg:person.011537254753.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537254753.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Walther-Meissner-Institut f\u00fcr Tieftemperaturforschung, Walther-Meissner-Str. 8, D-8046, Garching, Fed. Rep. of Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Walther-Meissner-Institut f\u00fcr Tieftemperaturforschung, Walther-Meissner-Str. 8, D-8046, Garching, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gutsmiedl", 
        "givenName": "P.", 
        "id": "sg:person.016471001447.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016471001447.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Laue-Langevin, 156X, F-38042, Grenoble Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.156520.5", 
          "name": [
            "Institut Laue-Langevin, 156X, F-38042, Grenoble Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magerl", 
        "givenName": "A.", 
        "id": "sg:person.01120550476.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120550476.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Laue-Langevin, 156X, F-38042, Grenoble Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.156520.5", 
          "name": [
            "Institut Laue-Langevin, 156X, F-38042, Grenoble Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dianoux", 
        "givenName": "A. J.", 
        "id": "sg:person.013440273141.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013440273141.19"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987", 
    "datePublishedReg": "1987-01-01", 
    "description": "The thermal destruction of a tunneling state in a molecular crystal, which becomes observable in a neutron spectroscopic experiment say above 10 K, is generally attributed to interactions with phonons. If the tunnel system is in a metallic environment there is an additional relaxation path originating from the interaction with electrons. We have studied by inelastic neutron scattering the tunneling of a single proton in Nb(OH)x with x = 0.002 and x = 0.0002 from 0.1 to 10 K in both a superconducting and a normal conducting environment (applied magnetic field 0.7 T). These data show that the interaction of the H tunnel state with conduction electrons dominates the observed damping in this temperature range. In addition, different values for the tunnel splitting are found in the superconducting state (Js = 226 \u03bceV) and in the normal conducting state (JN = 206 \u03bceV). This renormalisation and the damping are described consistently by only one coupling parameter K = 0.053.", 
    "editor": [
      {
        "familyName": "Heidemann", 
        "givenName": "Anton", 
        "type": "Person"
      }, 
      {
        "familyName": "Magerl", 
        "givenName": "Andreas", 
        "type": "Person"
      }, 
      {
        "familyName": "Richter", 
        "givenName": "Dieter", 
        "type": "Person"
      }, 
      {
        "familyName": "Prager", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Springer", 
        "givenName": "Tasso", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-71914-1_26", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-71916-5", 
        "978-3-642-71914-1"
      ], 
      "name": "Quantum Aspects of Molecular Motions in Solids", 
      "type": "Book"
    }, 
    "keywords": [
      "influence of electron", 
      "neutron spectroscopic experiments", 
      "inelastic neutron", 
      "relaxation paths", 
      "tunnel splitting", 
      "conduction electrons", 
      "single proton", 
      "observed damping", 
      "metallic environment", 
      "electrons", 
      "hydrogen atoms", 
      "spectroscopic experiments", 
      "tunneling states", 
      "tunnel states", 
      "molecular crystals", 
      "coupling parameter K", 
      "thermal destruction", 
      "neutrons", 
      "phonons", 
      "tunneling", 
      "temperature range", 
      "damping", 
      "protons", 
      "state", 
      "superconducting", 
      "atoms", 
      "splitting", 
      "different values", 
      "crystals", 
      "interaction", 
      "metals", 
      "renormalisation", 
      "parameter k", 
      "experiments", 
      "range", 
      "path", 
      "addition", 
      "environment", 
      "system", 
      "influence", 
      "values", 
      "destruction", 
      "tunnel system", 
      "data", 
      "additional relaxation path", 
      "normal conducting environment", 
      "conducting environment"
    ], 
    "name": "The Influence of Electrons on the Tunneling State of a Hydrogen Atom in a Metal", 
    "pagination": "153-157", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003764139"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-71914-1_26"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-71914-1_26", 
      "https://app.dimensions.ai/details/publication/pub.1003764139"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_337.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-71914-1_26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71914-1_26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71914-1_26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71914-1_26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71914-1_26'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      23 PREDICATES      73 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-71914-1_26 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N3d9eb922124244e5995b5da0b37657d0
4 schema:datePublished 1987
5 schema:datePublishedReg 1987-01-01
6 schema:description The thermal destruction of a tunneling state in a molecular crystal, which becomes observable in a neutron spectroscopic experiment say above 10 K, is generally attributed to interactions with phonons. If the tunnel system is in a metallic environment there is an additional relaxation path originating from the interaction with electrons. We have studied by inelastic neutron scattering the tunneling of a single proton in Nb(OH)x with x = 0.002 and x = 0.0002 from 0.1 to 10 K in both a superconducting and a normal conducting environment (applied magnetic field 0.7 T). These data show that the interaction of the H tunnel state with conduction electrons dominates the observed damping in this temperature range. In addition, different values for the tunnel splitting are found in the superconducting state (Js = 226 μeV) and in the normal conducting state (JN = 206 μeV). This renormalisation and the damping are described consistently by only one coupling parameter K = 0.053.
7 schema:editor Na2217a043f994bcd92a4aced03ba000d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf738c79a00ac43cc98731b4206428bfd
12 schema:keywords addition
13 additional relaxation path
14 atoms
15 conducting environment
16 conduction electrons
17 coupling parameter K
18 crystals
19 damping
20 data
21 destruction
22 different values
23 electrons
24 environment
25 experiments
26 hydrogen atoms
27 inelastic neutron
28 influence
29 influence of electron
30 interaction
31 metallic environment
32 metals
33 molecular crystals
34 neutron spectroscopic experiments
35 neutrons
36 normal conducting environment
37 observed damping
38 parameter k
39 path
40 phonons
41 protons
42 range
43 relaxation paths
44 renormalisation
45 single proton
46 spectroscopic experiments
47 splitting
48 state
49 superconducting
50 system
51 temperature range
52 thermal destruction
53 tunnel splitting
54 tunnel states
55 tunnel system
56 tunneling
57 tunneling states
58 values
59 schema:name The Influence of Electrons on the Tunneling State of a Hydrogen Atom in a Metal
60 schema:pagination 153-157
61 schema:productId N091440f7334c4acabd074b3a10af7cf0
62 Nd432b84e7fb340ad9e8a23802653f6ae
63 schema:publisher N580080b67a524c15a70813842bb30351
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003764139
65 https://doi.org/10.1007/978-3-642-71914-1_26
66 schema:sdDatePublished 2021-11-01T18:56
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N2a1fc413e4b44ed2b6bc1c60c92011aa
69 schema:url https://doi.org/10.1007/978-3-642-71914-1_26
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N091440f7334c4acabd074b3a10af7cf0 schema:name doi
74 schema:value 10.1007/978-3-642-71914-1_26
75 rdf:type schema:PropertyValue
76 N094c9d5680d945fa8653ac7b1a9eb34c rdf:first sg:person.07605444473.14
77 rdf:rest Nec110da98f004ca7a00b8dc5730f8839
78 N225b5d80c4054a1ca0977b9829add0dc schema:familyName Magerl
79 schema:givenName Andreas
80 rdf:type schema:Person
81 N2a1fc413e4b44ed2b6bc1c60c92011aa schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N2b2b3e240bb047069cfd48543045e61e rdf:first Nde3de9e369e34d0b8bdb774f9569b039
84 rdf:rest Nb93f82e853cf4da7bfe465b80d348183
85 N3a4d7a5e60ac447596c85abbadba8d71 rdf:first Ne22b9aa23350455e92a6f7daba213f78
86 rdf:rest N2b2b3e240bb047069cfd48543045e61e
87 N3d9eb922124244e5995b5da0b37657d0 rdf:first sg:person.07553115345.63
88 rdf:rest N094c9d5680d945fa8653ac7b1a9eb34c
89 N580080b67a524c15a70813842bb30351 schema:name Springer Nature
90 rdf:type schema:Organisation
91 N5ff6522138f745dd8f8b3a20f2866ad9 rdf:first N225b5d80c4054a1ca0977b9829add0dc
92 rdf:rest N3a4d7a5e60ac447596c85abbadba8d71
93 N7594a313600f406e8c0e2d380bff0f4f schema:familyName Springer
94 schema:givenName Tasso
95 rdf:type schema:Person
96 N8fab4826890b4011aaa124bb1a502133 rdf:first sg:person.01120550476.01
97 rdf:rest N99554a65dd464e4b9a35dda9bdc05203
98 N99554a65dd464e4b9a35dda9bdc05203 rdf:first sg:person.013440273141.19
99 rdf:rest rdf:nil
100 Na2217a043f994bcd92a4aced03ba000d rdf:first Na5545677d5bc442db0ec79ff1125dd19
101 rdf:rest N5ff6522138f745dd8f8b3a20f2866ad9
102 Na5545677d5bc442db0ec79ff1125dd19 schema:familyName Heidemann
103 schema:givenName Anton
104 rdf:type schema:Person
105 Nb93f82e853cf4da7bfe465b80d348183 rdf:first N7594a313600f406e8c0e2d380bff0f4f
106 rdf:rest rdf:nil
107 Nd0a09025a47f408d982572bd16510a8a rdf:first sg:person.016471001447.64
108 rdf:rest N8fab4826890b4011aaa124bb1a502133
109 Nd432b84e7fb340ad9e8a23802653f6ae schema:name dimensions_id
110 schema:value pub.1003764139
111 rdf:type schema:PropertyValue
112 Nde3de9e369e34d0b8bdb774f9569b039 schema:familyName Prager
113 schema:givenName Michael
114 rdf:type schema:Person
115 Ne22b9aa23350455e92a6f7daba213f78 schema:familyName Richter
116 schema:givenName Dieter
117 rdf:type schema:Person
118 Nec110da98f004ca7a00b8dc5730f8839 rdf:first sg:person.011537254753.17
119 rdf:rest Nd0a09025a47f408d982572bd16510a8a
120 Nf738c79a00ac43cc98731b4206428bfd schema:isbn 978-3-642-71914-1
121 978-3-642-71916-5
122 schema:name Quantum Aspects of Molecular Motions in Solids
123 rdf:type schema:Book
124 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
125 schema:name Chemical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
128 schema:name Physical Chemistry (incl. Structural)
129 rdf:type schema:DefinedTerm
130 sg:person.01120550476.01 schema:affiliation grid-institutes:grid.156520.5
131 schema:familyName Magerl
132 schema:givenName A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120550476.01
134 rdf:type schema:Person
135 sg:person.011537254753.17 schema:affiliation grid-institutes:None
136 schema:familyName Neumaier
137 schema:givenName K.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537254753.17
139 rdf:type schema:Person
140 sg:person.013440273141.19 schema:affiliation grid-institutes:grid.156520.5
141 schema:familyName Dianoux
142 schema:givenName A. J.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013440273141.19
144 rdf:type schema:Person
145 sg:person.016471001447.64 schema:affiliation grid-institutes:None
146 schema:familyName Gutsmiedl
147 schema:givenName P.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016471001447.64
149 rdf:type schema:Person
150 sg:person.07553115345.63 schema:affiliation grid-institutes:grid.6546.1
151 schema:familyName Wipf
152 schema:givenName H.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07553115345.63
154 rdf:type schema:Person
155 sg:person.07605444473.14 schema:affiliation grid-institutes:grid.6546.1
156 schema:familyName Steinbinder
157 schema:givenName D.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07605444473.14
159 rdf:type schema:Person
160 grid-institutes:None schema:alternateName Walther-Meissner-Institut für Tieftemperaturforschung, Walther-Meissner-Str. 8, D-8046, Garching, Fed. Rep. of Germany
161 schema:name Walther-Meissner-Institut für Tieftemperaturforschung, Walther-Meissner-Str. 8, D-8046, Garching, Fed. Rep. of Germany
162 rdf:type schema:Organization
163 grid-institutes:grid.156520.5 schema:alternateName Institut Laue-Langevin, 156X, F-38042, Grenoble Cedex, France
164 schema:name Institut Laue-Langevin, 156X, F-38042, Grenoble Cedex, France
165 rdf:type schema:Organization
166 grid-institutes:grid.6546.1 schema:alternateName Institut für Festkörperphysik, Technische Hochschule Darmstadt, Hochschulstr. 2, D-6100, Darmstadt, Fed. Rep. of Germany
167 schema:name Institut für Festkörperphysik, Technische Hochschule Darmstadt, Hochschulstr. 2, D-6100, Darmstadt, Fed. Rep. of Germany
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...