On the Fractal Dimension of Filtered Chaotic Signals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1986

AUTHORS

R. Badii , A. Politi

ABSTRACT

Much progress has been done in the reconstruction of the geometry of strange attractors, from experimental single time-series, exploiting embedding techniques [l], which make possible, for instance, the estimation of fractal dimensions and metric entropies. A particularly relevant aspect of these procedures, which has not yet been pointed out, concerns the role of filtering. In fact, not only any measurement of experimental signals is to some extent filtered, due to the finite instrumental bandwidth, but often an explicit intervention of the observer is present as well, motivated by the need of “cleaning” the system’s output from the presence of noise. More... »

PAGES

67-73

References to SciGraph publications

  • 1985-09. Statistical description of chaotic attractors: The dimension function in JOURNAL OF STATISTICAL PHYSICS
  • 1981-06. Some relations between dimension and Lyapounov exponents in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Book

    TITLE

    Dimensions and Entropies in Chaotic Systems

    ISBN

    978-3-642-71003-2
    978-3-642-71001-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-71001-8_9

    DOI

    http://dx.doi.org/10.1007/978-3-642-71001-8_9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053244953


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Institut f\u00fcr Theoretische Physik, Sch\u00f6nberggasse 9, CH-8001\u00a0Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Badii", 
            "givenName": "R.", 
            "id": "sg:person.012427002335.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427002335.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto Nazionale di Ottica", 
              "id": "https://www.grid.ac/institutes/grid.425378.f", 
              "name": [
                "Istituto Nazionale di Ottica, Largo E. Fermi 6, I-50125\u00a0Firenze, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Politi", 
            "givenName": "A.", 
            "id": "sg:person.013264105675.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01208896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008737116", 
              "https://doi.org/10.1007/bf01208896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01208896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008737116", 
              "https://doi.org/10.1007/bf01208896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01009897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030567916", 
              "https://doi.org/10.1007/bf01009897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700009615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053895692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700009615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053895692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700009615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053895692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.52.1661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060789857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.52.1661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060789857"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986", 
        "datePublishedReg": "1986-01-01", 
        "description": "Much progress has been done in the reconstruction of the geometry of strange attractors, from experimental single time-series, exploiting embedding techniques [l], which make possible, for instance, the estimation of fractal dimensions and metric entropies. A particularly relevant aspect of these procedures, which has not yet been pointed out, concerns the role of filtering. In fact, not only any measurement of experimental signals is to some extent filtered, due to the finite instrumental bandwidth, but often an explicit intervention of the observer is present as well, motivated by the need of \u201ccleaning\u201d the system\u2019s output from the presence of noise.", 
        "editor": [
          {
            "familyName": "Mayer-Kress", 
            "givenName": "Gottfried", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-71001-8_9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-71003-2", 
            "978-3-642-71001-8"
          ], 
          "name": "Dimensions and Entropies in Chaotic Systems", 
          "type": "Book"
        }, 
        "name": "On the Fractal Dimension of Filtered Chaotic Signals", 
        "pagination": "67-73", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-71001-8_9"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fd9dd763f9502351c24ece937f6c90cc27f0ab029e20d25c5a9cf4f841e36878"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053244953"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-71001-8_9", 
          "https://app.dimensions.ai/details/publication/pub.1053244953"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T22:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000276.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-71001-8_9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71001-8_9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71001-8_9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71001-8_9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-71001-8_9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    88 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-71001-8_9 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author Nec71b2d23cd845b09087db058fa6ef02
    4 schema:citation sg:pub.10.1007/bf01009897
    5 sg:pub.10.1007/bf01208896
    6 https://doi.org/10.1017/s0143385700009615
    7 https://doi.org/10.1103/physrevlett.52.1661
    8 schema:datePublished 1986
    9 schema:datePublishedReg 1986-01-01
    10 schema:description Much progress has been done in the reconstruction of the geometry of strange attractors, from experimental single time-series, exploiting embedding techniques [l], which make possible, for instance, the estimation of fractal dimensions and metric entropies. A particularly relevant aspect of these procedures, which has not yet been pointed out, concerns the role of filtering. In fact, not only any measurement of experimental signals is to some extent filtered, due to the finite instrumental bandwidth, but often an explicit intervention of the observer is present as well, motivated by the need of “cleaning” the system’s output from the presence of noise.
    11 schema:editor N92f8b092ce7a4d699eeef3024bea5f51
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N18df423927cb470380821cd3997e102c
    16 schema:name On the Fractal Dimension of Filtered Chaotic Signals
    17 schema:pagination 67-73
    18 schema:productId N195c78fa5dd54d22a7297a32f4e21092
    19 N3770ebc64fef4f778b260ab559af5a53
    20 Nc23be0e0a07a4d40b5fdaaa2dd77ea00
    21 schema:publisher N0cba33ef2d184a5f8fced684f8751786
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053244953
    23 https://doi.org/10.1007/978-3-642-71001-8_9
    24 schema:sdDatePublished 2019-04-15T22:01
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N4228c44977f8431fbf51a4bb4cf3856a
    27 schema:url http://link.springer.com/10.1007/978-3-642-71001-8_9
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N0cba33ef2d184a5f8fced684f8751786 schema:location Berlin, Heidelberg
    32 schema:name Springer Berlin Heidelberg
    33 rdf:type schema:Organisation
    34 N18df423927cb470380821cd3997e102c schema:isbn 978-3-642-71001-8
    35 978-3-642-71003-2
    36 schema:name Dimensions and Entropies in Chaotic Systems
    37 rdf:type schema:Book
    38 N195c78fa5dd54d22a7297a32f4e21092 schema:name doi
    39 schema:value 10.1007/978-3-642-71001-8_9
    40 rdf:type schema:PropertyValue
    41 N29dad20891564ce0bba8e8a8ea407457 rdf:first sg:person.013264105675.78
    42 rdf:rest rdf:nil
    43 N346d310a497946a6a2b1f422e8db1e4b schema:name Institut für Theoretische Physik, Schönberggasse 9, CH-8001 Zürich, Switzerland
    44 rdf:type schema:Organization
    45 N3770ebc64fef4f778b260ab559af5a53 schema:name readcube_id
    46 schema:value fd9dd763f9502351c24ece937f6c90cc27f0ab029e20d25c5a9cf4f841e36878
    47 rdf:type schema:PropertyValue
    48 N4228c44977f8431fbf51a4bb4cf3856a schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N88205baf2f374dbda61fe471ba981371 schema:familyName Mayer-Kress
    51 schema:givenName Gottfried
    52 rdf:type schema:Person
    53 N92f8b092ce7a4d699eeef3024bea5f51 rdf:first N88205baf2f374dbda61fe471ba981371
    54 rdf:rest rdf:nil
    55 Nc23be0e0a07a4d40b5fdaaa2dd77ea00 schema:name dimensions_id
    56 schema:value pub.1053244953
    57 rdf:type schema:PropertyValue
    58 Nec71b2d23cd845b09087db058fa6ef02 rdf:first sg:person.012427002335.57
    59 rdf:rest N29dad20891564ce0bba8e8a8ea407457
    60 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Engineering
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Electrical and Electronic Engineering
    65 rdf:type schema:DefinedTerm
    66 sg:person.012427002335.57 schema:affiliation N346d310a497946a6a2b1f422e8db1e4b
    67 schema:familyName Badii
    68 schema:givenName R.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012427002335.57
    70 rdf:type schema:Person
    71 sg:person.013264105675.78 schema:affiliation https://www.grid.ac/institutes/grid.425378.f
    72 schema:familyName Politi
    73 schema:givenName A.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78
    75 rdf:type schema:Person
    76 sg:pub.10.1007/bf01009897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030567916
    77 https://doi.org/10.1007/bf01009897
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf01208896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008737116
    80 https://doi.org/10.1007/bf01208896
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1017/s0143385700009615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053895692
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1103/physrevlett.52.1661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789857
    85 rdf:type schema:CreativeWork
    86 https://www.grid.ac/institutes/grid.425378.f schema:alternateName Istituto Nazionale di Ottica
    87 schema:name Istituto Nazionale di Ottica, Largo E. Fermi 6, I-50125 Firenze, Italy
    88 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...