Recent Developments in Algorithms and Software for Trust Region Methods View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

J. J. Moré

ABSTRACT

Trust region methods are an important class of iterative methods for the solution of nonlinear optimization problems. Algorithms in this class have been proposed for the solution of systems of nonlinear equations, nonlinear estimation problems, unconstrained and constrained optimization, nondifferentiable optimization, and large scale optimization. Interest in trust region methods derives, in part, from the availability of strong convergence results and from the development of software for these methods which is reliable, efficient, and amazingly free of ad-hoc decisions. In this paper we survey the theoretical and practical results available for trust region methods and discuss the relevance of these results to the implementation of trust region methods. More... »

PAGES

258-287

Book

TITLE

Mathematical Programming The State of the Art

ISBN

978-3-642-68876-8
978-3-642-68874-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_11

DOI

http://dx.doi.org/10.1007/978-3-642-68874-4_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010656325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Mathematics and Computer Science Division, Argonne Nat. Lab., 9700 S Cass Avenue\u00a0Argonne, IL\u00a060439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mor\u00e9", 
        "givenName": "J. J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01406969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001030131", 
          "https://doi.org/10.1007/bf01406969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01406969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001030131", 
          "https://doi.org/10.1007/bf01406969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01583797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004564452", 
          "https://doi.org/10.1007/bf01583797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/355887.355893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005502569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01584540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007358093", 
          "https://doi.org/10.1007/bf01584540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01584540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007358093", 
          "https://doi.org/10.1007/bf01584540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02591943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011068366", 
          "https://doi.org/10.1007/bf02591943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02591943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011068366", 
          "https://doi.org/10.1007/bf02591943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01394450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011503011", 
          "https://doi.org/10.1007/bf01394450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-597050-1.50006-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020966097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01930845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022695289", 
          "https://doi.org/10.1007/bf01930845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0067700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024612844", 
          "https://doi.org/10.1007/bfb0067700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-468650-2.50005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026101904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/355958.355965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026856789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1965-0198670-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034421108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0067703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038386004", 
          "https://doi.org/10.1007/bfb0067703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00932218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045975351", 
          "https://doi.org/10.1007/bf00932218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/355984.355989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047347899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02169154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049890723", 
          "https://doi.org/10.1007/bf02169154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02169154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049890723", 
          "https://doi.org/10.1007/bf02169154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/10666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059346793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/16.3.321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0111030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062837892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0712047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0716029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0717023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0719025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0719026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0720042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0902016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0904038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.7.4.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064722517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1909768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069638837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.049.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073597164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "Trust region methods are an important class of iterative methods for the solution of nonlinear optimization problems. Algorithms in this class have been proposed for the solution of systems of nonlinear equations, nonlinear estimation problems, unconstrained and constrained optimization, nondifferentiable optimization, and large scale optimization. Interest in trust region methods derives, in part, from the availability of strong convergence results and from the development of software for these methods which is reliable, efficient, and amazingly free of ad-hoc decisions. In this paper we survey the theoretical and practical results available for trust region methods and discuss the relevance of these results to the implementation of trust region methods.", 
    "editor": [
      {
        "familyName": "Bachem", 
        "givenName": "Achim", 
        "type": "Person"
      }, 
      {
        "familyName": "Korte", 
        "givenName": "Bernhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Gr\u00f6tschel", 
        "givenName": "Martin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-68874-4_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-68876-8", 
        "978-3-642-68874-4"
      ], 
      "name": "Mathematical Programming The State of the Art", 
      "type": "Book"
    }, 
    "name": "Recent Developments in Algorithms and Software for Trust Region Methods", 
    "pagination": "258-287", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-68874-4_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "32c4b36f761bb8a6ef3d1e7989592cdd40ea9bab467221d8f7f09ed27a98f061"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010656325"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-68874-4_11", 
      "https://app.dimensions.ai/details/publication/pub.1010656325"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000249.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-68874-4_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_11'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      23 PREDICATES      57 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-68874-4_11 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N03b051b60c964e4c8373eb79bb0d170f
4 schema:citation sg:pub.10.1007/bf00932218
5 sg:pub.10.1007/bf01394450
6 sg:pub.10.1007/bf01406969
7 sg:pub.10.1007/bf01583797
8 sg:pub.10.1007/bf01584540
9 sg:pub.10.1007/bf01930845
10 sg:pub.10.1007/bf02169154
11 sg:pub.10.1007/bf02591943
12 sg:pub.10.1007/bfb0067700
13 sg:pub.10.1007/bfb0067703
14 https://doi.org/10.1016/b978-0-12-468650-2.50005-5
15 https://doi.org/10.1016/b978-0-12-597050-1.50006-3
16 https://doi.org/10.1090/qam/10666
17 https://doi.org/10.1090/s0025-5718-1965-0198670-6
18 https://doi.org/10.1093/imamat/16.3.321
19 https://doi.org/10.1137/0111030
20 https://doi.org/10.1137/0712047
21 https://doi.org/10.1137/0716029
22 https://doi.org/10.1137/0717023
23 https://doi.org/10.1137/0719025
24 https://doi.org/10.1137/0719026
25 https://doi.org/10.1137/0720042
26 https://doi.org/10.1137/0902016
27 https://doi.org/10.1137/0904038
28 https://doi.org/10.1145/355887.355893
29 https://doi.org/10.1145/355958.355965
30 https://doi.org/10.1145/355984.355989
31 https://doi.org/10.1287/mnsc.7.4.379
32 https://doi.org/10.2307/1909768
33 https://doi.org/10.6028/jres.049.044
34 schema:datePublished 1983
35 schema:datePublishedReg 1983-01-01
36 schema:description Trust region methods are an important class of iterative methods for the solution of nonlinear optimization problems. Algorithms in this class have been proposed for the solution of systems of nonlinear equations, nonlinear estimation problems, unconstrained and constrained optimization, nondifferentiable optimization, and large scale optimization. Interest in trust region methods derives, in part, from the availability of strong convergence results and from the development of software for these methods which is reliable, efficient, and amazingly free of ad-hoc decisions. In this paper we survey the theoretical and practical results available for trust region methods and discuss the relevance of these results to the implementation of trust region methods.
37 schema:editor Nf9c11272558d46a9a669722d46b90ea0
38 schema:genre chapter
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N8087749a29b34854b636e758c965a88a
42 schema:name Recent Developments in Algorithms and Software for Trust Region Methods
43 schema:pagination 258-287
44 schema:productId N498b6782766e435c81dd35f717e16527
45 Nc8cb06cf16ab445a93a8ac2fdb838138
46 Nea2832f88b784aa185c228a079904d89
47 schema:publisher Na6d39844e44241f9b93f346585b3b810
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010656325
49 https://doi.org/10.1007/978-3-642-68874-4_11
50 schema:sdDatePublished 2019-04-15T13:26
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nbded1671c8e149e3a0c767a443abbee1
53 schema:url http://link.springer.com/10.1007/978-3-642-68874-4_11
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N03b051b60c964e4c8373eb79bb0d170f rdf:first N42ffd5047d4b49398cdadd67670e302a
58 rdf:rest rdf:nil
59 N16fce775e30d42588a829b63a72b766b schema:name Mathematics and Computer Science Division, Argonne Nat. Lab., 9700 S Cass Avenue Argonne, IL 60439, USA
60 rdf:type schema:Organization
61 N32b66ae0371146e5b44be61fd0381547 schema:familyName Grötschel
62 schema:givenName Martin
63 rdf:type schema:Person
64 N42ffd5047d4b49398cdadd67670e302a schema:affiliation N16fce775e30d42588a829b63a72b766b
65 schema:familyName Moré
66 schema:givenName J. J.
67 rdf:type schema:Person
68 N498b6782766e435c81dd35f717e16527 schema:name dimensions_id
69 schema:value pub.1010656325
70 rdf:type schema:PropertyValue
71 N729d751ebe864dc4bc8e17f6c39f2aad rdf:first N32b66ae0371146e5b44be61fd0381547
72 rdf:rest rdf:nil
73 N8087749a29b34854b636e758c965a88a schema:isbn 978-3-642-68874-4
74 978-3-642-68876-8
75 schema:name Mathematical Programming The State of the Art
76 rdf:type schema:Book
77 Na3101bae598a41818a95a0cd8617ee68 rdf:first Nfb19772d9911437db4fa261b24c6b3b3
78 rdf:rest N729d751ebe864dc4bc8e17f6c39f2aad
79 Na6d39844e44241f9b93f346585b3b810 schema:location Berlin, Heidelberg
80 schema:name Springer Berlin Heidelberg
81 rdf:type schema:Organisation
82 Nbded1671c8e149e3a0c767a443abbee1 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nc8cb06cf16ab445a93a8ac2fdb838138 schema:name readcube_id
85 schema:value 32c4b36f761bb8a6ef3d1e7989592cdd40ea9bab467221d8f7f09ed27a98f061
86 rdf:type schema:PropertyValue
87 Nea2832f88b784aa185c228a079904d89 schema:name doi
88 schema:value 10.1007/978-3-642-68874-4_11
89 rdf:type schema:PropertyValue
90 Nf9c11272558d46a9a669722d46b90ea0 rdf:first Nfe68201bc79041f89aca3c56e45d6baf
91 rdf:rest Na3101bae598a41818a95a0cd8617ee68
92 Nfb19772d9911437db4fa261b24c6b3b3 schema:familyName Korte
93 schema:givenName Bernhard
94 rdf:type schema:Person
95 Nfe68201bc79041f89aca3c56e45d6baf schema:familyName Bachem
96 schema:givenName Achim
97 rdf:type schema:Person
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
102 schema:name Numerical and Computational Mathematics
103 rdf:type schema:DefinedTerm
104 sg:pub.10.1007/bf00932218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045975351
105 https://doi.org/10.1007/bf00932218
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01394450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011503011
108 https://doi.org/10.1007/bf01394450
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01406969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001030131
111 https://doi.org/10.1007/bf01406969
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01583797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004564452
114 https://doi.org/10.1007/bf01583797
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf01584540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007358093
117 https://doi.org/10.1007/bf01584540
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf01930845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022695289
120 https://doi.org/10.1007/bf01930845
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf02169154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049890723
123 https://doi.org/10.1007/bf02169154
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf02591943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011068366
126 https://doi.org/10.1007/bf02591943
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bfb0067700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024612844
129 https://doi.org/10.1007/bfb0067700
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bfb0067703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038386004
132 https://doi.org/10.1007/bfb0067703
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/b978-0-12-468650-2.50005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026101904
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/b978-0-12-597050-1.50006-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020966097
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1090/qam/10666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059346793
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1090/s0025-5718-1965-0198670-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034421108
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/imamat/16.3.321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684492
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/0111030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062837892
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1137/0712047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852294
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1137/0716029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852590
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1137/0717023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852664
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/0719025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852820
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1137/0719026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852821
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1137/0720042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852930
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1137/0902016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855536
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1137/0904038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855628
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1145/355887.355893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005502569
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1145/355958.355965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026856789
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1145/355984.355989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047347899
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1287/mnsc.7.4.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722517
169 rdf:type schema:CreativeWork
170 https://doi.org/10.2307/1909768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069638837
171 rdf:type schema:CreativeWork
172 https://doi.org/10.6028/jres.049.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073597164
173 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...