Recent Developments in Algorithms and Software for Trust Region Methods View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

J. J. Moré

ABSTRACT

Trust region methods are an important class of iterative methods for the solution of nonlinear optimization problems. Algorithms in this class have been proposed for the solution of systems of nonlinear equations, nonlinear estimation problems, unconstrained and constrained optimization, nondifferentiable optimization, and large scale optimization. Interest in trust region methods derives, in part, from the availability of strong convergence results and from the development of software for these methods which is reliable, efficient, and amazingly free of ad-hoc decisions. In this paper we survey the theoretical and practical results available for trust region methods and discuss the relevance of these results to the implementation of trust region methods. More... »

PAGES

258-287

Book

TITLE

Mathematical Programming The State of the Art

ISBN

978-3-642-68876-8
978-3-642-68874-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_11

DOI

http://dx.doi.org/10.1007/978-3-642-68874-4_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010656325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Mathematics and Computer Science Division, Argonne Nat. Lab., 9700 S Cass Avenue\u00a0Argonne, IL\u00a060439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mor\u00e9", 
        "givenName": "J. J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01406969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001030131", 
          "https://doi.org/10.1007/bf01406969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01406969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001030131", 
          "https://doi.org/10.1007/bf01406969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01583797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004564452", 
          "https://doi.org/10.1007/bf01583797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/355887.355893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005502569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01584540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007358093", 
          "https://doi.org/10.1007/bf01584540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01584540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007358093", 
          "https://doi.org/10.1007/bf01584540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02591943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011068366", 
          "https://doi.org/10.1007/bf02591943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02591943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011068366", 
          "https://doi.org/10.1007/bf02591943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01394450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011503011", 
          "https://doi.org/10.1007/bf01394450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-597050-1.50006-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020966097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01930845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022695289", 
          "https://doi.org/10.1007/bf01930845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0067700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024612844", 
          "https://doi.org/10.1007/bfb0067700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-468650-2.50005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026101904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/355958.355965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026856789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1965-0198670-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034421108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0067703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038386004", 
          "https://doi.org/10.1007/bfb0067703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00932218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045975351", 
          "https://doi.org/10.1007/bf00932218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/355984.355989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047347899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02169154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049890723", 
          "https://doi.org/10.1007/bf02169154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02169154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049890723", 
          "https://doi.org/10.1007/bf02169154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/10666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059346793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamat/16.3.321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059684492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0111030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062837892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0712047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0716029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0717023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0719025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0719026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0720042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0902016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0904038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.7.4.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064722517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1909768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069638837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.049.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073597164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "Trust region methods are an important class of iterative methods for the solution of nonlinear optimization problems. Algorithms in this class have been proposed for the solution of systems of nonlinear equations, nonlinear estimation problems, unconstrained and constrained optimization, nondifferentiable optimization, and large scale optimization. Interest in trust region methods derives, in part, from the availability of strong convergence results and from the development of software for these methods which is reliable, efficient, and amazingly free of ad-hoc decisions. In this paper we survey the theoretical and practical results available for trust region methods and discuss the relevance of these results to the implementation of trust region methods.", 
    "editor": [
      {
        "familyName": "Bachem", 
        "givenName": "Achim", 
        "type": "Person"
      }, 
      {
        "familyName": "Korte", 
        "givenName": "Bernhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Gr\u00f6tschel", 
        "givenName": "Martin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-68874-4_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-68876-8", 
        "978-3-642-68874-4"
      ], 
      "name": "Mathematical Programming The State of the Art", 
      "type": "Book"
    }, 
    "name": "Recent Developments in Algorithms and Software for Trust Region Methods", 
    "pagination": "258-287", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-68874-4_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "32c4b36f761bb8a6ef3d1e7989592cdd40ea9bab467221d8f7f09ed27a98f061"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010656325"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-68874-4_11", 
      "https://app.dimensions.ai/details/publication/pub.1010656325"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000249.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-68874-4_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_11'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      23 PREDICATES      57 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-68874-4_11 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Na0c172a541c24730bfc150d1e6b5f1cc
4 schema:citation sg:pub.10.1007/bf00932218
5 sg:pub.10.1007/bf01394450
6 sg:pub.10.1007/bf01406969
7 sg:pub.10.1007/bf01583797
8 sg:pub.10.1007/bf01584540
9 sg:pub.10.1007/bf01930845
10 sg:pub.10.1007/bf02169154
11 sg:pub.10.1007/bf02591943
12 sg:pub.10.1007/bfb0067700
13 sg:pub.10.1007/bfb0067703
14 https://doi.org/10.1016/b978-0-12-468650-2.50005-5
15 https://doi.org/10.1016/b978-0-12-597050-1.50006-3
16 https://doi.org/10.1090/qam/10666
17 https://doi.org/10.1090/s0025-5718-1965-0198670-6
18 https://doi.org/10.1093/imamat/16.3.321
19 https://doi.org/10.1137/0111030
20 https://doi.org/10.1137/0712047
21 https://doi.org/10.1137/0716029
22 https://doi.org/10.1137/0717023
23 https://doi.org/10.1137/0719025
24 https://doi.org/10.1137/0719026
25 https://doi.org/10.1137/0720042
26 https://doi.org/10.1137/0902016
27 https://doi.org/10.1137/0904038
28 https://doi.org/10.1145/355887.355893
29 https://doi.org/10.1145/355958.355965
30 https://doi.org/10.1145/355984.355989
31 https://doi.org/10.1287/mnsc.7.4.379
32 https://doi.org/10.2307/1909768
33 https://doi.org/10.6028/jres.049.044
34 schema:datePublished 1983
35 schema:datePublishedReg 1983-01-01
36 schema:description Trust region methods are an important class of iterative methods for the solution of nonlinear optimization problems. Algorithms in this class have been proposed for the solution of systems of nonlinear equations, nonlinear estimation problems, unconstrained and constrained optimization, nondifferentiable optimization, and large scale optimization. Interest in trust region methods derives, in part, from the availability of strong convergence results and from the development of software for these methods which is reliable, efficient, and amazingly free of ad-hoc decisions. In this paper we survey the theoretical and practical results available for trust region methods and discuss the relevance of these results to the implementation of trust region methods.
37 schema:editor Ndde09329245542ab8af2004303397a7b
38 schema:genre chapter
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N8bba54f55ed84591b171dd731fe4524f
42 schema:name Recent Developments in Algorithms and Software for Trust Region Methods
43 schema:pagination 258-287
44 schema:productId N2ae5db522084456e8121658995279877
45 N91f9023bc3754044ae9bc991d6d8c2a9
46 N9da83add51344202af1a84136f59d63b
47 schema:publisher Ne4d285dcaf7c4f88b70984d740efa77a
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010656325
49 https://doi.org/10.1007/978-3-642-68874-4_11
50 schema:sdDatePublished 2019-04-15T13:26
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N9a4a42fbf27a44f79b2c87db7334e0f3
53 schema:url http://link.springer.com/10.1007/978-3-642-68874-4_11
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N2ae5db522084456e8121658995279877 schema:name doi
58 schema:value 10.1007/978-3-642-68874-4_11
59 rdf:type schema:PropertyValue
60 N2fa5bb5cc89949eba924d6f172df6caf schema:affiliation Nb25d6498023f4fb39936036df2763912
61 schema:familyName Moré
62 schema:givenName J. J.
63 rdf:type schema:Person
64 N855f7c00ae364d8d90a9122739e2f071 rdf:first Nf3039ad5a27642408ffa319f50e7e7a0
65 rdf:rest N9442f49e16074303b6c732aa7adb72a5
66 N8bba54f55ed84591b171dd731fe4524f schema:isbn 978-3-642-68874-4
67 978-3-642-68876-8
68 schema:name Mathematical Programming The State of the Art
69 rdf:type schema:Book
70 N91f9023bc3754044ae9bc991d6d8c2a9 schema:name readcube_id
71 schema:value 32c4b36f761bb8a6ef3d1e7989592cdd40ea9bab467221d8f7f09ed27a98f061
72 rdf:type schema:PropertyValue
73 N9442f49e16074303b6c732aa7adb72a5 rdf:first Nf8e3e9f610404f4594e7d0719ea2cc71
74 rdf:rest rdf:nil
75 N96faa4a2715e4dcdaf981eae44dced19 schema:familyName Bachem
76 schema:givenName Achim
77 rdf:type schema:Person
78 N9a4a42fbf27a44f79b2c87db7334e0f3 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N9da83add51344202af1a84136f59d63b schema:name dimensions_id
81 schema:value pub.1010656325
82 rdf:type schema:PropertyValue
83 Na0c172a541c24730bfc150d1e6b5f1cc rdf:first N2fa5bb5cc89949eba924d6f172df6caf
84 rdf:rest rdf:nil
85 Nb25d6498023f4fb39936036df2763912 schema:name Mathematics and Computer Science Division, Argonne Nat. Lab., 9700 S Cass Avenue Argonne, IL 60439, USA
86 rdf:type schema:Organization
87 Ndde09329245542ab8af2004303397a7b rdf:first N96faa4a2715e4dcdaf981eae44dced19
88 rdf:rest N855f7c00ae364d8d90a9122739e2f071
89 Ne4d285dcaf7c4f88b70984d740efa77a schema:location Berlin, Heidelberg
90 schema:name Springer Berlin Heidelberg
91 rdf:type schema:Organisation
92 Nf3039ad5a27642408ffa319f50e7e7a0 schema:familyName Korte
93 schema:givenName Bernhard
94 rdf:type schema:Person
95 Nf8e3e9f610404f4594e7d0719ea2cc71 schema:familyName Grötschel
96 schema:givenName Martin
97 rdf:type schema:Person
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
102 schema:name Numerical and Computational Mathematics
103 rdf:type schema:DefinedTerm
104 sg:pub.10.1007/bf00932218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045975351
105 https://doi.org/10.1007/bf00932218
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01394450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011503011
108 https://doi.org/10.1007/bf01394450
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01406969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001030131
111 https://doi.org/10.1007/bf01406969
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01583797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004564452
114 https://doi.org/10.1007/bf01583797
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf01584540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007358093
117 https://doi.org/10.1007/bf01584540
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf01930845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022695289
120 https://doi.org/10.1007/bf01930845
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf02169154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049890723
123 https://doi.org/10.1007/bf02169154
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf02591943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011068366
126 https://doi.org/10.1007/bf02591943
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bfb0067700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024612844
129 https://doi.org/10.1007/bfb0067700
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bfb0067703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038386004
132 https://doi.org/10.1007/bfb0067703
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/b978-0-12-468650-2.50005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026101904
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/b978-0-12-597050-1.50006-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020966097
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1090/qam/10666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059346793
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1090/s0025-5718-1965-0198670-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034421108
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/imamat/16.3.321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059684492
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/0111030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062837892
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1137/0712047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852294
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1137/0716029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852590
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1137/0717023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852664
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/0719025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852820
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1137/0719026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852821
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1137/0720042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852930
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1137/0902016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855536
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1137/0904038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855628
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1145/355887.355893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005502569
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1145/355958.355965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026856789
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1145/355984.355989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047347899
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1287/mnsc.7.4.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722517
169 rdf:type schema:CreativeWork
170 https://doi.org/10.2307/1909768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069638837
171 rdf:type schema:CreativeWork
172 https://doi.org/10.6028/jres.049.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073597164
173 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...