Submodular functions and convexity View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

L. Lovász

ABSTRACT

In “continuous” optimization convex functions play a central role. Besides elementary tools like differentiation, various methods for finding the minimum of a convex function constitute the main body of nonlinear optimization. But even linear programming may be viewed as the optimization of very special (linear) objective functions over very special convex domains (polyhedra). There are several reasons for this popularity of convex functions: Convex functions occur in many mathematical models in economy, engineering, and other sciencies. Convexity is a very natural property of various functions and domains occuring in such models; quite often the only non-trivial property which can be stated in general. More... »

PAGES

235-257

Book

TITLE

Mathematical Programming The State of the Art

ISBN

978-3-642-68876-8
978-3-642-68874-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_10

DOI

http://dx.doi.org/10.1007/978-3-642-68874-4_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046106483


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Analysis I, E\u00f6tv\u00f6s Lor\u00e1nd University, M\u00fazeum krt. 6-8, H-1088, Budapest, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.5591.8", 
          "name": [
            "Department of Analysis I, E\u00f6tv\u00f6s Lor\u00e1nd University, M\u00fazeum krt. 6-8, H-1088, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lov\u00e1sz", 
        "givenName": "L.", 
        "id": "sg:person.012110073101.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012110073101.57"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "In \u201ccontinuous\u201d optimization convex functions play a central role. Besides elementary tools like differentiation, various methods for finding the minimum of a convex function constitute the main body of nonlinear optimization. But even linear programming may be viewed as the optimization of very special (linear) objective functions over very special convex domains (polyhedra). There are several reasons for this popularity of convex functions:\nConvex functions occur in many mathematical models in economy, engineering, and other sciencies. Convexity is a very natural property of various functions and domains occuring in such models; quite often the only non-trivial property which can be stated in general.", 
    "editor": [
      {
        "familyName": "Bachem", 
        "givenName": "Achim", 
        "type": "Person"
      }, 
      {
        "familyName": "Korte", 
        "givenName": "Bernhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Gr\u00f6tschel", 
        "givenName": "Martin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-68874-4_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-68876-8", 
        "978-3-642-68874-4"
      ], 
      "name": "Mathematical Programming The State of the Art", 
      "type": "Book"
    }, 
    "keywords": [
      "convex functions", 
      "special objective function", 
      "non-trivial properties", 
      "nonlinear optimization", 
      "mathematical model", 
      "elementary tools", 
      "objective function", 
      "linear programming", 
      "submodular functions", 
      "convex domain", 
      "such models", 
      "convexity", 
      "optimization", 
      "natural properties", 
      "function", 
      "programming", 
      "model", 
      "sciencies", 
      "domain", 
      "properties", 
      "engineering", 
      "main body", 
      "tool", 
      "minimum", 
      "popularity", 
      "central role", 
      "reasons", 
      "body", 
      "economy", 
      "role", 
      "differentiation", 
      "method", 
      "optimization convex functions", 
      "special convex domains", 
      "only non-trivial property"
    ], 
    "name": "Submodular functions and convexity", 
    "pagination": "235-257", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046106483"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-68874-4_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-68874-4_10", 
      "https://app.dimensions.ai/details/publication/pub.1046106483"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_366.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-68874-4_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_10'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      23 PREDICATES      62 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-68874-4_10 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author N32bdbfb6e6334011a4d8335028b47a83
5 schema:datePublished 1983
6 schema:datePublishedReg 1983-01-01
7 schema:description In “continuous” optimization convex functions play a central role. Besides elementary tools like differentiation, various methods for finding the minimum of a convex function constitute the main body of nonlinear optimization. But even linear programming may be viewed as the optimization of very special (linear) objective functions over very special convex domains (polyhedra). There are several reasons for this popularity of convex functions: Convex functions occur in many mathematical models in economy, engineering, and other sciencies. Convexity is a very natural property of various functions and domains occuring in such models; quite often the only non-trivial property which can be stated in general.
8 schema:editor Nc8d6f431012349d596a3b43d75dc8392
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nc52a6a3e37b741908bcdbca42c5b72db
13 schema:keywords body
14 central role
15 convex domain
16 convex functions
17 convexity
18 differentiation
19 domain
20 economy
21 elementary tools
22 engineering
23 function
24 linear programming
25 main body
26 mathematical model
27 method
28 minimum
29 model
30 natural properties
31 non-trivial properties
32 nonlinear optimization
33 objective function
34 only non-trivial property
35 optimization
36 optimization convex functions
37 popularity
38 programming
39 properties
40 reasons
41 role
42 sciencies
43 special convex domains
44 special objective function
45 submodular functions
46 such models
47 tool
48 schema:name Submodular functions and convexity
49 schema:pagination 235-257
50 schema:productId N98ca1c50a72b4f2a86aa95d1148c2fa8
51 Nccd0a2130b034d87ab81c914e554f37b
52 schema:publisher N372ab596295b4463b946728d68fedd11
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046106483
54 https://doi.org/10.1007/978-3-642-68874-4_10
55 schema:sdDatePublished 2021-11-01T18:57
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N9e27319758074bb396b37d71c6c84081
58 schema:url https://doi.org/10.1007/978-3-642-68874-4_10
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N196724d52dae42589356efd09044282f rdf:first N41cdbe46b67541adaee4e4f7d3a7375e
63 rdf:rest Nb04832ebc72f4491859afb0340800f37
64 N32bdbfb6e6334011a4d8335028b47a83 rdf:first sg:person.012110073101.57
65 rdf:rest rdf:nil
66 N372ab596295b4463b946728d68fedd11 schema:name Springer Nature
67 rdf:type schema:Organisation
68 N41cdbe46b67541adaee4e4f7d3a7375e schema:familyName Korte
69 schema:givenName Bernhard
70 rdf:type schema:Person
71 N434a30ce4e4e4a7e9d77cb2ca3e5c872 schema:familyName Bachem
72 schema:givenName Achim
73 rdf:type schema:Person
74 N98ca1c50a72b4f2a86aa95d1148c2fa8 schema:name doi
75 schema:value 10.1007/978-3-642-68874-4_10
76 rdf:type schema:PropertyValue
77 N9e27319758074bb396b37d71c6c84081 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Na2e0be7a51f5440d823144aa686873ad schema:familyName Grötschel
80 schema:givenName Martin
81 rdf:type schema:Person
82 Nb04832ebc72f4491859afb0340800f37 rdf:first Na2e0be7a51f5440d823144aa686873ad
83 rdf:rest rdf:nil
84 Nc52a6a3e37b741908bcdbca42c5b72db schema:isbn 978-3-642-68874-4
85 978-3-642-68876-8
86 schema:name Mathematical Programming The State of the Art
87 rdf:type schema:Book
88 Nc8d6f431012349d596a3b43d75dc8392 rdf:first N434a30ce4e4e4a7e9d77cb2ca3e5c872
89 rdf:rest N196724d52dae42589356efd09044282f
90 Nccd0a2130b034d87ab81c914e554f37b schema:name dimensions_id
91 schema:value pub.1046106483
92 rdf:type schema:PropertyValue
93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mathematical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
97 schema:name Applied Mathematics
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
100 schema:name Numerical and Computational Mathematics
101 rdf:type schema:DefinedTerm
102 sg:person.012110073101.57 schema:affiliation grid-institutes:grid.5591.8
103 schema:familyName Lovász
104 schema:givenName L.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012110073101.57
106 rdf:type schema:Person
107 grid-institutes:grid.5591.8 schema:alternateName Department of Analysis I, Eötvös Loránd University, Múzeum krt. 6-8, H-1088, Budapest, Hungary
108 schema:name Department of Analysis I, Eötvös Loránd University, Múzeum krt. 6-8, H-1088, Budapest, Hungary
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...