Submodular functions and convexity View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

L. Lovász

ABSTRACT

In “continuous” optimization convex functions play a central role. Besides elementary tools like differentiation, various methods for finding the minimum of a convex function constitute the main body of nonlinear optimization. But even linear programming may be viewed as the optimization of very special (linear) objective functions over very special convex domains (polyhedra). There are several reasons for this popularity of convex functions: Convex functions occur in many mathematical models in economy, engineering, and other sciencies. Convexity is a very natural property of various functions and domains occuring in such models; quite often the only non-trivial property which can be stated in general. More... »

PAGES

235-257

Book

TITLE

Mathematical Programming The State of the Art

ISBN

978-3-642-68876-8
978-3-642-68874-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_10

DOI

http://dx.doi.org/10.1007/978-3-642-68874-4_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046106483


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Analysis I, E\u00f6tv\u00f6s Lor\u00e1nd University, M\u00fazeum krt. 6-8, H-1088, Budapest, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.5591.8", 
          "name": [
            "Department of Analysis I, E\u00f6tv\u00f6s Lor\u00e1nd University, M\u00fazeum krt. 6-8, H-1088, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lov\u00e1sz", 
        "givenName": "L.", 
        "id": "sg:person.012110073101.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012110073101.57"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "In \u201ccontinuous\u201d optimization convex functions play a central role. Besides elementary tools like differentiation, various methods for finding the minimum of a convex function constitute the main body of nonlinear optimization. But even linear programming may be viewed as the optimization of very special (linear) objective functions over very special convex domains (polyhedra). There are several reasons for this popularity of convex functions:\nConvex functions occur in many mathematical models in economy, engineering, and other sciencies. Convexity is a very natural property of various functions and domains occuring in such models; quite often the only non-trivial property which can be stated in general.", 
    "editor": [
      {
        "familyName": "Bachem", 
        "givenName": "Achim", 
        "type": "Person"
      }, 
      {
        "familyName": "Korte", 
        "givenName": "Bernhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Gr\u00f6tschel", 
        "givenName": "Martin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-68874-4_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-68876-8", 
        "978-3-642-68874-4"
      ], 
      "name": "Mathematical Programming The State of the Art", 
      "type": "Book"
    }, 
    "keywords": [
      "convex functions", 
      "special objective function", 
      "non-trivial properties", 
      "nonlinear optimization", 
      "mathematical model", 
      "elementary tools", 
      "objective function", 
      "linear programming", 
      "submodular functions", 
      "convex domain", 
      "such models", 
      "convexity", 
      "optimization", 
      "natural properties", 
      "function", 
      "programming", 
      "model", 
      "sciencies", 
      "domain", 
      "properties", 
      "engineering", 
      "main body", 
      "tool", 
      "minimum", 
      "popularity", 
      "central role", 
      "reasons", 
      "body", 
      "economy", 
      "role", 
      "differentiation", 
      "method", 
      "optimization convex functions", 
      "special convex domains", 
      "only non-trivial property"
    ], 
    "name": "Submodular functions and convexity", 
    "pagination": "235-257", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046106483"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-68874-4_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-68874-4_10", 
      "https://app.dimensions.ai/details/publication/pub.1046106483"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_366.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-68874-4_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-68874-4_10'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      23 PREDICATES      62 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-68874-4_10 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 schema:author Ne84b2421d9ad4fcb9c47758d424729ae
5 schema:datePublished 1983
6 schema:datePublishedReg 1983-01-01
7 schema:description In “continuous” optimization convex functions play a central role. Besides elementary tools like differentiation, various methods for finding the minimum of a convex function constitute the main body of nonlinear optimization. But even linear programming may be viewed as the optimization of very special (linear) objective functions over very special convex domains (polyhedra). There are several reasons for this popularity of convex functions: Convex functions occur in many mathematical models in economy, engineering, and other sciencies. Convexity is a very natural property of various functions and domains occuring in such models; quite often the only non-trivial property which can be stated in general.
8 schema:editor Nc3b7620a28814936a7ed8c589b4e3901
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N607f6283d16140f1a1dc1580bfd05759
13 schema:keywords body
14 central role
15 convex domain
16 convex functions
17 convexity
18 differentiation
19 domain
20 economy
21 elementary tools
22 engineering
23 function
24 linear programming
25 main body
26 mathematical model
27 method
28 minimum
29 model
30 natural properties
31 non-trivial properties
32 nonlinear optimization
33 objective function
34 only non-trivial property
35 optimization
36 optimization convex functions
37 popularity
38 programming
39 properties
40 reasons
41 role
42 sciencies
43 special convex domains
44 special objective function
45 submodular functions
46 such models
47 tool
48 schema:name Submodular functions and convexity
49 schema:pagination 235-257
50 schema:productId N8b68ad188d0a4486b0ce6be94565fc43
51 Nacba3bd4cdc34c7986592fb9acf9fb57
52 schema:publisher Nf08b061f91da4423afd15e8a0c756dbe
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046106483
54 https://doi.org/10.1007/978-3-642-68874-4_10
55 schema:sdDatePublished 2021-11-01T18:57
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N8ade3172dd4545e98349236df22ae21a
58 schema:url https://doi.org/10.1007/978-3-642-68874-4_10
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N5e9e6cec12254418ae9b1de30148af02 schema:familyName Korte
63 schema:givenName Bernhard
64 rdf:type schema:Person
65 N607f6283d16140f1a1dc1580bfd05759 schema:isbn 978-3-642-68874-4
66 978-3-642-68876-8
67 schema:name Mathematical Programming The State of the Art
68 rdf:type schema:Book
69 N8ade3172dd4545e98349236df22ae21a schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N8b68ad188d0a4486b0ce6be94565fc43 schema:name doi
72 schema:value 10.1007/978-3-642-68874-4_10
73 rdf:type schema:PropertyValue
74 N99f613e6f50542d3be24b2db18fe5828 rdf:first N5e9e6cec12254418ae9b1de30148af02
75 rdf:rest Nfb8d3d0338fe4d7980ceb26f1d1fce05
76 Nac51b547ff074a79b76e21eb0a3c39a6 schema:familyName Bachem
77 schema:givenName Achim
78 rdf:type schema:Person
79 Nacba3bd4cdc34c7986592fb9acf9fb57 schema:name dimensions_id
80 schema:value pub.1046106483
81 rdf:type schema:PropertyValue
82 Nb8b35e70381b491a9d8bb1fc2446434c schema:familyName Grötschel
83 schema:givenName Martin
84 rdf:type schema:Person
85 Nc3b7620a28814936a7ed8c589b4e3901 rdf:first Nac51b547ff074a79b76e21eb0a3c39a6
86 rdf:rest N99f613e6f50542d3be24b2db18fe5828
87 Ne84b2421d9ad4fcb9c47758d424729ae rdf:first sg:person.012110073101.57
88 rdf:rest rdf:nil
89 Nf08b061f91da4423afd15e8a0c756dbe schema:name Springer Nature
90 rdf:type schema:Organisation
91 Nfb8d3d0338fe4d7980ceb26f1d1fce05 rdf:first Nb8b35e70381b491a9d8bb1fc2446434c
92 rdf:rest rdf:nil
93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mathematical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
97 schema:name Applied Mathematics
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
100 schema:name Numerical and Computational Mathematics
101 rdf:type schema:DefinedTerm
102 sg:person.012110073101.57 schema:affiliation grid-institutes:grid.5591.8
103 schema:familyName Lovász
104 schema:givenName L.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012110073101.57
106 rdf:type schema:Person
107 grid-institutes:grid.5591.8 schema:alternateName Department of Analysis I, Eötvös Loránd University, Múzeum krt. 6-8, H-1088, Budapest, Hungary
108 schema:name Department of Analysis I, Eötvös Loránd University, Múzeum krt. 6-8, H-1088, Budapest, Hungary
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...