Evaluation of the Spatio-Temporal Variability of Tropical Convection in GCMs by Using Geostationary Satellite Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

J.uvel , J. J. Morcrette , E. Klinker

ABSTRACT

The temporal variability of convection at short time-scales (from diurnal to intra-seasonal) is an important characteristic outlining the response of the tropical atmosphere to astronomical forcing and its interaction with dynamical forcing. The spatial organisation of the convective cells into larger clusters of different sizes also is a strong characteristic of tropical convection. This paper presents analyses that can be used to evaluate the spatio-temporal variability in GCMs from measurements of geostationary meteorological satellites. The aim is not only to evaluate the description of the convective activity but also to trace the source of the cloud radiative forcing obtained in GCMs. These analyses make use of the modelled radiance in the infrared window and are compared to satellite data in a “model-to-satellite”approach. As an illustration, we present some preliminary results obtained from a comparison between the ECMWF model and Meteosat data over Africa and the Atlantic Ocean. Three model time series are used based either on “first guess” or on two runs without assimilation. The aim of the “first guess” time series is to validate the response of the cloud parameterization to realistic (i.e. close to the analysis) dynamical and thermodynamical fields. Two runs of three months without assimilation, identical except for the cloud scheme, are also analysed. More... »

PAGES

43-50

Book

TITLE

Climate Sensitivity to Radiative Perturbations

ISBN

978-3-642-64673-7
978-3-642-61053-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-61053-0_4

DOI

http://dx.doi.org/10.1007/978-3-642-61053-0_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030989735


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique", 
          "id": "https://www.grid.ac/institutes/grid.463916.f", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique, Ecole Polytechnique, 91128, Palaiseau cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J.uvel", 
        "id": "sg:person.016231764413.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016231764413.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, RG2 9AX, Shinfield Park, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morcrette", 
        "givenName": "J. J.", 
        "id": "sg:person.011404346561.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404346561.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, RG2 9AX, Shinfield Park, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klinker", 
        "givenName": "E.", 
        "id": "sg:person.014255211357.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255211357.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/90jd01830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002775263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1987)115<1451:sotdco>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004099299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1993)121<3040:rocils>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007552386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0265(91)90018-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008514756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0265(91)90018-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008514756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1993)121<0037:dvambe>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011441421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/92jd01408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017229052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1990)003<1129:bodcci>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020057497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49711247205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022063896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49712051807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028750171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1992)120<0392:scodcs>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034257175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1991)072<0467:aogcif>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042820381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1989)117<2782:cotaat>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049633317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1990)118<1855:cotaat>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051341736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1991)119<1205:eomgcs>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051767422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1988)001<0471:aodiai>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063421264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477-64.7.779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103169269"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "The temporal variability of convection at short time-scales (from diurnal to intra-seasonal) is an important characteristic outlining the response of the tropical atmosphere to astronomical forcing and its interaction with dynamical forcing. The spatial organisation of the convective cells into larger clusters of different sizes also is a strong characteristic of tropical convection. This paper presents analyses that can be used to evaluate the spatio-temporal variability in GCMs from measurements of geostationary meteorological satellites. The aim is not only to evaluate the description of the convective activity but also to trace the source of the cloud radiative forcing obtained in GCMs. These analyses make use of the modelled radiance in the infrared window and are compared to satellite data in a \u201cmodel-to-satellite\u201dapproach. As an illustration, we present some preliminary results obtained from a comparison between the ECMWF model and Meteosat data over Africa and the Atlantic Ocean. Three model time series are used based either on \u201cfirst guess\u201d or on two runs without assimilation. The aim of the \u201cfirst guess\u201d time series is to validate the response of the cloud parameterization to realistic (i.e. close to the analysis) dynamical and thermodynamical fields. Two runs of three months without assimilation, identical except for the cloud scheme, are also analysed.", 
    "editor": [
      {
        "familyName": "Treut", 
        "givenName": "Herv\u00e9 Le", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-61053-0_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-64673-7", 
        "978-3-642-61053-0"
      ], 
      "name": "Climate Sensitivity to Radiative Perturbations", 
      "type": "Book"
    }, 
    "name": "Evaluation of the Spatio-Temporal Variability of Tropical Convection in GCMs by Using Geostationary Satellite Data", 
    "pagination": "43-50", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030989735"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-61053-0_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93a250500bcc383a3a58ae69298ce72cc0e24bbcb4480681fa2bf597e83b829a"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-61053-0_4", 
      "https://app.dimensions.ai/details/publication/pub.1030989735"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130792_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-61053-0_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-61053-0_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-61053-0_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-61053-0_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-61053-0_4'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-61053-0_4 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nac861ff320b044e19ce99497b11a444e
4 schema:citation https://doi.org/10.1002/qj.49711247205
5 https://doi.org/10.1002/qj.49712051807
6 https://doi.org/10.1016/0377-0265(91)90018-b
7 https://doi.org/10.1029/90jd01830
8 https://doi.org/10.1029/92jd01408
9 https://doi.org/10.1175/1520-0442(1988)001<0471:aodiai>2.0.co;2
10 https://doi.org/10.1175/1520-0442(1990)003<1129:bodcci>2.0.co;2
11 https://doi.org/10.1175/1520-0477(1991)072<0467:aogcif>2.0.co;2
12 https://doi.org/10.1175/1520-0477-64.7.779
13 https://doi.org/10.1175/1520-0493(1987)115<1451:sotdco>2.0.co;2
14 https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2
15 https://doi.org/10.1175/1520-0493(1989)117<2782:cotaat>2.0.co;2
16 https://doi.org/10.1175/1520-0493(1990)118<1855:cotaat>2.0.co;2
17 https://doi.org/10.1175/1520-0493(1991)119<1205:eomgcs>2.0.co;2
18 https://doi.org/10.1175/1520-0493(1992)120<0392:scodcs>2.0.co;2
19 https://doi.org/10.1175/1520-0493(1993)121<0037:dvambe>2.0.co;2
20 https://doi.org/10.1175/1520-0493(1993)121<3040:rocils>2.0.co;2
21 schema:datePublished 1996
22 schema:datePublishedReg 1996-01-01
23 schema:description The temporal variability of convection at short time-scales (from diurnal to intra-seasonal) is an important characteristic outlining the response of the tropical atmosphere to astronomical forcing and its interaction with dynamical forcing. The spatial organisation of the convective cells into larger clusters of different sizes also is a strong characteristic of tropical convection. This paper presents analyses that can be used to evaluate the spatio-temporal variability in GCMs from measurements of geostationary meteorological satellites. The aim is not only to evaluate the description of the convective activity but also to trace the source of the cloud radiative forcing obtained in GCMs. These analyses make use of the modelled radiance in the infrared window and are compared to satellite data in a “model-to-satellite”approach. As an illustration, we present some preliminary results obtained from a comparison between the ECMWF model and Meteosat data over Africa and the Atlantic Ocean. Three model time series are used based either on “first guess” or on two runs without assimilation. The aim of the “first guess” time series is to validate the response of the cloud parameterization to realistic (i.e. close to the analysis) dynamical and thermodynamical fields. Two runs of three months without assimilation, identical except for the cloud scheme, are also analysed.
24 schema:editor N3d82598df51e486787796585bd2a9fe4
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N9e617c6aa61d471cb9d88ab633bd40cc
29 schema:name Evaluation of the Spatio-Temporal Variability of Tropical Convection in GCMs by Using Geostationary Satellite Data
30 schema:pagination 43-50
31 schema:productId N3d603d5fdc1c427f96539aa06ff84a0f
32 Ne960e3548be04d8d8fc943ec19e1ecfd
33 Nf62f282a7035428f874c20fc39f77676
34 schema:publisher Ne86a1670cd384cbca00673aedbd7f0ec
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030989735
36 https://doi.org/10.1007/978-3-642-61053-0_4
37 schema:sdDatePublished 2019-04-16T09:09
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N9419f8e66d9640bb996156ad8aa50d49
40 schema:url https://link.springer.com/10.1007%2F978-3-642-61053-0_4
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N18c68af677e6452390e3c30a816ae750 rdf:first sg:person.011404346561.01
45 rdf:rest Nf212ce11abd74d809068970619dc06d0
46 N39203f8307e745d4a674e527aa0950ae schema:familyName Treut
47 schema:givenName Hervé Le
48 rdf:type schema:Person
49 N3d603d5fdc1c427f96539aa06ff84a0f schema:name dimensions_id
50 schema:value pub.1030989735
51 rdf:type schema:PropertyValue
52 N3d82598df51e486787796585bd2a9fe4 rdf:first N39203f8307e745d4a674e527aa0950ae
53 rdf:rest rdf:nil
54 N9419f8e66d9640bb996156ad8aa50d49 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N9e617c6aa61d471cb9d88ab633bd40cc schema:isbn 978-3-642-61053-0
57 978-3-642-64673-7
58 schema:name Climate Sensitivity to Radiative Perturbations
59 rdf:type schema:Book
60 Nac861ff320b044e19ce99497b11a444e rdf:first sg:person.016231764413.61
61 rdf:rest N18c68af677e6452390e3c30a816ae750
62 Ne86a1670cd384cbca00673aedbd7f0ec schema:location Berlin, Heidelberg
63 schema:name Springer Berlin Heidelberg
64 rdf:type schema:Organisation
65 Ne960e3548be04d8d8fc943ec19e1ecfd schema:name readcube_id
66 schema:value 93a250500bcc383a3a58ae69298ce72cc0e24bbcb4480681fa2bf597e83b829a
67 rdf:type schema:PropertyValue
68 Nf212ce11abd74d809068970619dc06d0 rdf:first sg:person.014255211357.98
69 rdf:rest rdf:nil
70 Nf62f282a7035428f874c20fc39f77676 schema:name doi
71 schema:value 10.1007/978-3-642-61053-0_4
72 rdf:type schema:PropertyValue
73 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
74 schema:name Earth Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
77 schema:name Atmospheric Sciences
78 rdf:type schema:DefinedTerm
79 sg:person.011404346561.01 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
80 schema:familyName Morcrette
81 schema:givenName J. J.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404346561.01
83 rdf:type schema:Person
84 sg:person.014255211357.98 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
85 schema:familyName Klinker
86 schema:givenName E.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255211357.98
88 rdf:type schema:Person
89 sg:person.016231764413.61 schema:affiliation https://www.grid.ac/institutes/grid.463916.f
90 schema:familyName J.uvel
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016231764413.61
92 rdf:type schema:Person
93 https://doi.org/10.1002/qj.49711247205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022063896
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/qj.49712051807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028750171
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0377-0265(91)90018-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1008514756
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1029/90jd01830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002775263
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1029/92jd01408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017229052
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1175/1520-0442(1988)001<0471:aodiai>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063421264
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1175/1520-0442(1990)003<1129:bodcci>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457745
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1175/1520-0477(1991)072<0467:aogcif>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042820381
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1175/1520-0477-64.7.779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103169269
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1175/1520-0493(1987)115<1451:sotdco>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004099299
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020057497
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1175/1520-0493(1989)117<2782:cotaat>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049633317
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1175/1520-0493(1990)118<1855:cotaat>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051341736
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1175/1520-0493(1991)119<1205:eomgcs>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051767422
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1175/1520-0493(1992)120<0392:scodcs>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034257175
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1175/1520-0493(1993)121<0037:dvambe>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011441421
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1175/1520-0493(1993)121<3040:rocils>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007552386
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
128 schema:name ECMWF, RG2 9AX, Shinfield Park, Reading, UK
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.463916.f schema:alternateName Laboratoire de Météorologie Dynamique
131 schema:name Laboratoire de Météorologie Dynamique, Ecole Polytechnique, 91128, Palaiseau cedex, France
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...