Aerosol and greenhouse gases forcing: Cloud feedbacks associated to the climate response View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

Hervé Le Treut , Michèle Forichon , Olivier Boucher , Zhao-Xin Li

ABSTRACT

If the climate impact of the increased atmospheric concentration in greenhouse gases has received a very large attention, the increased atmospheric loading in anthropogenic aerosols has been ignored for a long time. Recent studies, however, all converge to show its large importance for the climate evolution throughout the twentieth century. During this period the negative aerosol forcing might have had the same amplitude than the positive greenhouse forcing. But aerosols act in several manners, and their impact is still hard to quantify with precision. The aerosol direct effect consists in aerosol backscattering of visible radiation, thereby increasing the planetary albedo. It is active notably, but not exclusively, in clear-sky situations. To predict the direct aerosol forcing, for example between present-day and pre-industrial conditions, requires the knowledge of (1) pre-industrial and present-day distributions of the different aerosol types, (2) prediction of their optical properties, and (3) adequate treatment of the radiative transfer equation for a small perturbation as caused by a thin aerosol layer (Charlson et al., 1992). This direct effect have been represented under the simple form of a surface albedo perturbation by Mitchell et al. (1995) and Roeckner et al. (1995) to estimate its impact in transient climate scenarios using coupled ocean/atmosphere models. The same direct effect has been also considered more comprehensively in the experiments of Taylor and Penner (1994) where the equilibrium climate changes in response to perturbations of the greenhouse gases and sulfate aerosols, from the pre-industrial epoch to the the present one, were considered. All experiments show the significance of the aerosol forcing. Charlson et al. (1987) have shown that an indirect aerosol effect can add up to the direct effect. More... »

PAGES

267-280

Book

TITLE

Climate Sensitivity to Radiative Perturbations

ISBN

978-3-642-64673-7
978-3-642-61053-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-61053-0_20

DOI

http://dx.doi.org/10.1007/978-3-642-61053-0_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025424932


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75231, Paris Cedex 05, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75231, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Treut", 
        "givenName": "Herv\u00e9 Le", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75231, Paris Cedex 05, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75231, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forichon", 
        "givenName": "Mich\u00e8le", 
        "id": "sg:person.010435266150.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435266150.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75231, Paris Cedex 05, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75231, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boucher", 
        "givenName": "Olivier", 
        "id": "sg:person.01301253676.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75231, Paris Cedex 05, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique du CNRS, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, 75231, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Zhao-Xin", 
        "id": "sg:person.07347420507.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347420507.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "If the climate impact of the increased atmospheric concentration in greenhouse gases has received a very large attention, the increased atmospheric loading in anthropogenic aerosols has been ignored for a long time. Recent studies, however, all converge to show its large importance for the climate evolution throughout the twentieth century. During this period the negative aerosol forcing might have had the same amplitude than the positive greenhouse forcing. But aerosols act in several manners, and their impact is still hard to quantify with precision. The aerosol direct effect consists in aerosol backscattering of visible radiation, thereby increasing the planetary albedo. It is active notably, but not exclusively, in clear-sky situations. To predict the direct aerosol forcing, for example between present-day and pre-industrial conditions, requires the knowledge of (1) pre-industrial and present-day distributions of the different aerosol types, (2) prediction of their optical properties, and (3) adequate treatment of the radiative transfer equation for a small perturbation as caused by a thin aerosol layer (Charlson et al., 1992). This direct effect have been represented under the simple form of a surface albedo perturbation by Mitchell et al. (1995) and Roeckner et al. (1995) to estimate its impact in transient climate scenarios using coupled ocean/atmosphere models. The same direct effect has been also considered more comprehensively in the experiments of Taylor and Penner (1994) where the equilibrium climate changes in response to perturbations of the greenhouse gases and sulfate aerosols, from the pre-industrial epoch to the the present one, were considered. All experiments show the significance of the aerosol forcing. Charlson et al. (1987) have shown that an indirect aerosol effect can add up to the direct effect.", 
    "editor": [
      {
        "familyName": "Treut", 
        "givenName": "Herv\u00e9 Le", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-61053-0_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-64673-7", 
        "978-3-642-61053-0"
      ], 
      "name": "Climate Sensitivity to Radiative Perturbations", 
      "type": "Book"
    }, 
    "keywords": [
      "greenhouse gases", 
      "ocean/atmosphere model", 
      "equilibrium climate change", 
      "aerosol direct effect", 
      "pre-industrial conditions", 
      "indirect aerosol effect", 
      "different aerosol types", 
      "transient climate scenarios", 
      "thin aerosol layers", 
      "clear-sky situations", 
      "pre-industrial epoch", 
      "present-day distribution", 
      "cloud feedback", 
      "anthropogenic aerosols", 
      "climate evolution", 
      "aerosol forcing", 
      "climate response", 
      "planetary albedo", 
      "aerosol effect", 
      "aerosol layer", 
      "atmospheric loading", 
      "direct aerosol", 
      "same direct effect", 
      "experiments of Taylor", 
      "sulfate aerosols", 
      "aerosol types", 
      "albedo perturbations", 
      "climate scenarios", 
      "Atmosphere Model", 
      "atmospheric concentrations", 
      "climate impacts", 
      "climate change", 
      "aerosols", 
      "gases", 
      "radiative transfer equation", 
      "forcing", 
      "Mitchell et al", 
      "albedo", 
      "et al", 
      "large importance", 
      "perturbations", 
      "same amplitude", 
      "twentieth century", 
      "epoch", 
      "impact", 
      "evolution", 
      "transfer equation", 
      "al", 
      "visible radiation", 
      "century", 
      "layer", 
      "backscattering", 
      "direct effect", 
      "distribution", 
      "period", 
      "scenarios", 
      "optical properties", 
      "small perturbations", 
      "amplitude", 
      "radiation", 
      "changes", 
      "concentration", 
      "feedback", 
      "prediction", 
      "long time", 
      "Recent studies", 
      "conditions", 
      "model", 
      "loading", 
      "experiments", 
      "importance", 
      "greenhouse", 
      "response", 
      "time", 
      "Penner", 
      "significance", 
      "example", 
      "precision", 
      "effect", 
      "types", 
      "simple form", 
      "Taylor", 
      "study", 
      "large attention", 
      "equations", 
      "knowledge", 
      "properties", 
      "form", 
      "situation", 
      "attention", 
      "manner", 
      "adequate treatment", 
      "treatment"
    ], 
    "name": "Aerosol and greenhouse gases forcing: Cloud feedbacks associated to the climate response", 
    "pagination": "267-280", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025424932"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-61053-0_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-61053-0_20", 
      "https://app.dimensions.ai/details/publication/pub.1025424932"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_437.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-61053-0_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-61053-0_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-61053-0_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-61053-0_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-61053-0_20'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      23 PREDICATES      119 URIs      112 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-61053-0_20 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Ndf55300d8b0f48d59b78a2d87340b72a
4 schema:datePublished 1996
5 schema:datePublishedReg 1996-01-01
6 schema:description If the climate impact of the increased atmospheric concentration in greenhouse gases has received a very large attention, the increased atmospheric loading in anthropogenic aerosols has been ignored for a long time. Recent studies, however, all converge to show its large importance for the climate evolution throughout the twentieth century. During this period the negative aerosol forcing might have had the same amplitude than the positive greenhouse forcing. But aerosols act in several manners, and their impact is still hard to quantify with precision. The aerosol direct effect consists in aerosol backscattering of visible radiation, thereby increasing the planetary albedo. It is active notably, but not exclusively, in clear-sky situations. To predict the direct aerosol forcing, for example between present-day and pre-industrial conditions, requires the knowledge of (1) pre-industrial and present-day distributions of the different aerosol types, (2) prediction of their optical properties, and (3) adequate treatment of the radiative transfer equation for a small perturbation as caused by a thin aerosol layer (Charlson et al., 1992). This direct effect have been represented under the simple form of a surface albedo perturbation by Mitchell et al. (1995) and Roeckner et al. (1995) to estimate its impact in transient climate scenarios using coupled ocean/atmosphere models. The same direct effect has been also considered more comprehensively in the experiments of Taylor and Penner (1994) where the equilibrium climate changes in response to perturbations of the greenhouse gases and sulfate aerosols, from the pre-industrial epoch to the the present one, were considered. All experiments show the significance of the aerosol forcing. Charlson et al. (1987) have shown that an indirect aerosol effect can add up to the direct effect.
7 schema:editor N2d170b5b533a4fcda3366ecf421ac996
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N0f890483245b4d0bbbe9fa7472a66b7e
12 schema:keywords Atmosphere Model
13 Mitchell et al
14 Penner
15 Recent studies
16 Taylor
17 adequate treatment
18 aerosol direct effect
19 aerosol effect
20 aerosol forcing
21 aerosol layer
22 aerosol types
23 aerosols
24 al
25 albedo
26 albedo perturbations
27 amplitude
28 anthropogenic aerosols
29 atmospheric concentrations
30 atmospheric loading
31 attention
32 backscattering
33 century
34 changes
35 clear-sky situations
36 climate change
37 climate evolution
38 climate impacts
39 climate response
40 climate scenarios
41 cloud feedback
42 concentration
43 conditions
44 different aerosol types
45 direct aerosol
46 direct effect
47 distribution
48 effect
49 epoch
50 equations
51 equilibrium climate change
52 et al
53 evolution
54 example
55 experiments
56 experiments of Taylor
57 feedback
58 forcing
59 form
60 gases
61 greenhouse
62 greenhouse gases
63 impact
64 importance
65 indirect aerosol effect
66 knowledge
67 large attention
68 large importance
69 layer
70 loading
71 long time
72 manner
73 model
74 ocean/atmosphere model
75 optical properties
76 period
77 perturbations
78 planetary albedo
79 pre-industrial conditions
80 pre-industrial epoch
81 precision
82 prediction
83 present-day distribution
84 properties
85 radiation
86 radiative transfer equation
87 response
88 same amplitude
89 same direct effect
90 scenarios
91 significance
92 simple form
93 situation
94 small perturbations
95 study
96 sulfate aerosols
97 thin aerosol layers
98 time
99 transfer equation
100 transient climate scenarios
101 treatment
102 twentieth century
103 types
104 visible radiation
105 schema:name Aerosol and greenhouse gases forcing: Cloud feedbacks associated to the climate response
106 schema:pagination 267-280
107 schema:productId N905f399ec1864353b5eba78f6ddbbd52
108 Na186be9cb7ba4df6ab500ae402134b86
109 schema:publisher N7363a193e78e47499c12be0697e1dc09
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025424932
111 https://doi.org/10.1007/978-3-642-61053-0_20
112 schema:sdDatePublished 2022-05-10T10:52
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher N21eece5bd5df49d58d3dd91d4b2dd982
115 schema:url https://doi.org/10.1007/978-3-642-61053-0_20
116 sgo:license sg:explorer/license/
117 sgo:sdDataset chapters
118 rdf:type schema:Chapter
119 N0f890483245b4d0bbbe9fa7472a66b7e schema:isbn 978-3-642-61053-0
120 978-3-642-64673-7
121 schema:name Climate Sensitivity to Radiative Perturbations
122 rdf:type schema:Book
123 N21eece5bd5df49d58d3dd91d4b2dd982 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 N2740ec77d08940e3b66cb5aeb8c545f6 schema:affiliation grid-institutes:None
126 schema:familyName Treut
127 schema:givenName Hervé Le
128 rdf:type schema:Person
129 N2d170b5b533a4fcda3366ecf421ac996 rdf:first Nfadd4c5a59934cd892b037ba098aca23
130 rdf:rest rdf:nil
131 N7363a193e78e47499c12be0697e1dc09 schema:name Springer Nature
132 rdf:type schema:Organisation
133 N753292e1d1974d0da85f181579738cdf rdf:first sg:person.01301253676.11
134 rdf:rest Na0e96c0015114b97a19da1371c864ae9
135 N905f399ec1864353b5eba78f6ddbbd52 schema:name dimensions_id
136 schema:value pub.1025424932
137 rdf:type schema:PropertyValue
138 Na0e96c0015114b97a19da1371c864ae9 rdf:first sg:person.07347420507.05
139 rdf:rest rdf:nil
140 Na186be9cb7ba4df6ab500ae402134b86 schema:name doi
141 schema:value 10.1007/978-3-642-61053-0_20
142 rdf:type schema:PropertyValue
143 Nd957fbd3e9b54943a9b7bd467591aad5 rdf:first sg:person.010435266150.17
144 rdf:rest N753292e1d1974d0da85f181579738cdf
145 Ndf55300d8b0f48d59b78a2d87340b72a rdf:first N2740ec77d08940e3b66cb5aeb8c545f6
146 rdf:rest Nd957fbd3e9b54943a9b7bd467591aad5
147 Nfadd4c5a59934cd892b037ba098aca23 schema:familyName Treut
148 schema:givenName Hervé Le
149 rdf:type schema:Person
150 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
151 schema:name Earth Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
154 schema:name Atmospheric Sciences
155 rdf:type schema:DefinedTerm
156 sg:person.010435266150.17 schema:affiliation grid-institutes:None
157 schema:familyName Forichon
158 schema:givenName Michèle
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435266150.17
160 rdf:type schema:Person
161 sg:person.01301253676.11 schema:affiliation grid-institutes:None
162 schema:familyName Boucher
163 schema:givenName Olivier
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11
165 rdf:type schema:Person
166 sg:person.07347420507.05 schema:affiliation grid-institutes:None
167 schema:familyName Li
168 schema:givenName Zhao-Xin
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347420507.05
170 rdf:type schema:Person
171 grid-institutes:None schema:alternateName Laboratoire de Météorologie Dynamique du CNRS, Ecole Normale Supérieure, 24 rue Lhomond, 75231, Paris Cedex 05, France
172 schema:name Laboratoire de Météorologie Dynamique du CNRS, Ecole Normale Supérieure, 24 rue Lhomond, 75231, Paris Cedex 05, France
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...