Modeling the Effects of Prior Infection on Vaccine Efficacy View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1999

AUTHORS

D. J. Smith , Stephanie Forrest , D. H. Ackley , A. S. Perelson

ABSTRACT

We performed computer simulations to study the effects of prior infection on vaccine efficacy.We injected three antigens sequentially. The first antigen,Ensignated theprior,represented a prior infection or vaccination.The second antigen, thevaccine, represented a single component of the trivalent influenza vaccine. The third antigen, theepiEnmic, represented challenge by an epiEnmic strain. For a fixed vaccine to epiEnmic strain cross-reactivity, we generated prior strains over a full range of cross-reactivities to the vaccine and to the epiEnmic strains.We found that, for many cross-reactivities, vaccination, when it had been preceEnd by a prior infection, proviEnd more protection than vaccination alone. However, at some crossreactivities, the prior infection reduced protection by clearing the vaccine before it had the chance to produce protective memory.The cross-reactivities between the prior, vaccine and epiEnmic strains played a major role in Entermining vaccine efficacy. This work has applications to unEnrstanding vaccination against viruses such as influenza that are continually mutating More... »

PAGES

144-153

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-59901-9_8

DOI

http://dx.doi.org/10.1007/978-3-642-59901-9_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039500605


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of New Mexico, 87131, Albuquerque, USA", 
          "id": "http://www.grid.ac/institutes/grid.266832.b", 
          "name": [
            "Department of Computer Science, University of New Mexico, 87131, Albuquerque, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "D. J.", 
        "id": "sg:person.01164420614.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164420614.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Enpartment of Computer Science, University of New Mexico, 87131, Albuquerque, USA", 
          "id": "http://www.grid.ac/institutes/grid.266832.b", 
          "name": [
            "Enpartment of Computer Science, University of New Mexico, 87131, Albuquerque, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forrest", 
        "givenName": "Stephanie", 
        "id": "sg:person.0712103012.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712103012.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Enpartment of Computer Science, University of New Mexico, 87131, Albuquerque, USA", 
          "id": "http://www.grid.ac/institutes/grid.266832.b", 
          "name": [
            "Enpartment of Computer Science, University of New Mexico, 87131, Albuquerque, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ackley", 
        "givenName": "D. H.", 
        "id": "sg:person.01004556010.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004556010.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Division, Los Alamos National Laboratory, 87545, Los Alamos, USA", 
          "id": "http://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Theoretical Division, Los Alamos National Laboratory, 87545, Los Alamos, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perelson", 
        "givenName": "A. S.", 
        "id": "sg:person.01335541022.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335541022.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "We performed computer simulations to study the effects of prior infection on vaccine efficacy.We injected three antigens sequentially. The first antigen,Ensignated theprior,represented a prior infection or vaccination.The second antigen, thevaccine, represented a single component of the trivalent influenza vaccine. The third antigen, theepiEnmic, represented challenge by an epiEnmic strain. For a fixed vaccine to epiEnmic strain cross-reactivity, we generated prior strains over a full range of cross-reactivities to the vaccine and to the epiEnmic strains.We found that, for many cross-reactivities, vaccination, when it had been preceEnd by a prior infection, proviEnd more protection than vaccination alone. However, at some crossreactivities, the prior infection reduced protection by clearing the vaccine before it had the chance to produce protective memory.The cross-reactivities between the prior, vaccine and epiEnmic strains played a major role in Entermining vaccine efficacy. This work has applications to unEnrstanding vaccination against viruses such as influenza that are continually mutating", 
    "editor": [
      {
        "familyName": "Dasgupta", 
        "givenName": "Dipankar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-59901-9_8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-64174-9", 
        "978-3-642-59901-9"
      ], 
      "name": "Artificial Immune Systems and Their Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "prior infection", 
      "vaccine efficacy", 
      "trivalent influenza vaccine", 
      "protective memory", 
      "influenza vaccine", 
      "vaccination", 
      "third antigen", 
      "vaccine", 
      "infection", 
      "antigen", 
      "first antigen", 
      "second antigen", 
      "efficacy", 
      "major role", 
      "influenza", 
      "more protection", 
      "virus", 
      "crossreactivity", 
      "strains", 
      "effect", 
      "protection", 
      "full range", 
      "role", 
      "chance", 
      "memory", 
      "single component", 
      "challenges", 
      "components", 
      "range", 
      "work", 
      "applications", 
      "modeling", 
      "computer simulation", 
      "simulations", 
      "Ensignated theprior", 
      "theprior", 
      "thevaccine", 
      "epiEnmic strain", 
      "proviEnd more protection", 
      "Entermining vaccine efficacy"
    ], 
    "name": "Modeling the Effects of Prior Infection on Vaccine Efficacy", 
    "pagination": "144-153", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039500605"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-59901-9_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-59901-9_8", 
      "https://app.dimensions.ai/details/publication/pub.1039500605"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_433.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-59901-9_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-59901-9_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-59901-9_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-59901-9_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-59901-9_8'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-59901-9_8 schema:about anzsrc-for:11
2 anzsrc-for:1107
3 schema:author N236c2462b8584ca3999f687c3554a654
4 schema:datePublished 1999
5 schema:datePublishedReg 1999-01-01
6 schema:description We performed computer simulations to study the effects of prior infection on vaccine efficacy.We injected three antigens sequentially. The first antigen,Ensignated theprior,represented a prior infection or vaccination.The second antigen, thevaccine, represented a single component of the trivalent influenza vaccine. The third antigen, theepiEnmic, represented challenge by an epiEnmic strain. For a fixed vaccine to epiEnmic strain cross-reactivity, we generated prior strains over a full range of cross-reactivities to the vaccine and to the epiEnmic strains.We found that, for many cross-reactivities, vaccination, when it had been preceEnd by a prior infection, proviEnd more protection than vaccination alone. However, at some crossreactivities, the prior infection reduced protection by clearing the vaccine before it had the chance to produce protective memory.The cross-reactivities between the prior, vaccine and epiEnmic strains played a major role in Entermining vaccine efficacy. This work has applications to unEnrstanding vaccination against viruses such as influenza that are continually mutating
7 schema:editor N3beadd56aa70442a95f011448bdcec4e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N6ace9aeaca1d4676a83d4270c3d356fb
12 schema:keywords Ensignated theprior
13 Entermining vaccine efficacy
14 antigen
15 applications
16 challenges
17 chance
18 components
19 computer simulation
20 crossreactivity
21 effect
22 efficacy
23 epiEnmic strain
24 first antigen
25 full range
26 infection
27 influenza
28 influenza vaccine
29 major role
30 memory
31 modeling
32 more protection
33 prior infection
34 protection
35 protective memory
36 proviEnd more protection
37 range
38 role
39 second antigen
40 simulations
41 single component
42 strains
43 theprior
44 thevaccine
45 third antigen
46 trivalent influenza vaccine
47 vaccination
48 vaccine
49 vaccine efficacy
50 virus
51 work
52 schema:name Modeling the Effects of Prior Infection on Vaccine Efficacy
53 schema:pagination 144-153
54 schema:productId N97c27dc3c35245949a29d16e9e715296
55 Nf11c1a769f6a4488a2eed41d88242b61
56 schema:publisher Nc01d9cfd14044692b469ccbf8d661e10
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039500605
58 https://doi.org/10.1007/978-3-642-59901-9_8
59 schema:sdDatePublished 2021-12-01T20:10
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N9b894caaa8ee45f0b35cfb90292c6baa
62 schema:url https://doi.org/10.1007/978-3-642-59901-9_8
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N22cacc1700ef4e8ca1c090a41a0e10e8 rdf:first sg:person.0712103012.64
67 rdf:rest N4b3cf53d27a043c8a8b2c0117043611e
68 N236c2462b8584ca3999f687c3554a654 rdf:first sg:person.01164420614.61
69 rdf:rest N22cacc1700ef4e8ca1c090a41a0e10e8
70 N3beadd56aa70442a95f011448bdcec4e rdf:first N79c7deda814c49eebc93ad76360f5eba
71 rdf:rest rdf:nil
72 N4b3cf53d27a043c8a8b2c0117043611e rdf:first sg:person.01004556010.49
73 rdf:rest Na6402df017b34b56927d60336070e0f9
74 N6ace9aeaca1d4676a83d4270c3d356fb schema:isbn 978-3-642-59901-9
75 978-3-642-64174-9
76 schema:name Artificial Immune Systems and Their Applications
77 rdf:type schema:Book
78 N79c7deda814c49eebc93ad76360f5eba schema:familyName Dasgupta
79 schema:givenName Dipankar
80 rdf:type schema:Person
81 N97c27dc3c35245949a29d16e9e715296 schema:name doi
82 schema:value 10.1007/978-3-642-59901-9_8
83 rdf:type schema:PropertyValue
84 N9b894caaa8ee45f0b35cfb90292c6baa schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Na6402df017b34b56927d60336070e0f9 rdf:first sg:person.01335541022.50
87 rdf:rest rdf:nil
88 Nc01d9cfd14044692b469ccbf8d661e10 schema:name Springer Nature
89 rdf:type schema:Organisation
90 Nf11c1a769f6a4488a2eed41d88242b61 schema:name dimensions_id
91 schema:value pub.1039500605
92 rdf:type schema:PropertyValue
93 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
94 schema:name Medical and Health Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
97 schema:name Immunology
98 rdf:type schema:DefinedTerm
99 sg:person.01004556010.49 schema:affiliation grid-institutes:grid.266832.b
100 schema:familyName Ackley
101 schema:givenName D. H.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004556010.49
103 rdf:type schema:Person
104 sg:person.01164420614.61 schema:affiliation grid-institutes:grid.266832.b
105 schema:familyName Smith
106 schema:givenName D. J.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164420614.61
108 rdf:type schema:Person
109 sg:person.01335541022.50 schema:affiliation grid-institutes:grid.148313.c
110 schema:familyName Perelson
111 schema:givenName A. S.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335541022.50
113 rdf:type schema:Person
114 sg:person.0712103012.64 schema:affiliation grid-institutes:grid.266832.b
115 schema:familyName Forrest
116 schema:givenName Stephanie
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712103012.64
118 rdf:type schema:Person
119 grid-institutes:grid.148313.c schema:alternateName Theoretical Division, Los Alamos National Laboratory, 87545, Los Alamos, USA
120 schema:name Theoretical Division, Los Alamos National Laboratory, 87545, Los Alamos, USA
121 rdf:type schema:Organization
122 grid-institutes:grid.266832.b schema:alternateName Department of Computer Science, University of New Mexico, 87131, Albuquerque, USA
123 Enpartment of Computer Science, University of New Mexico, 87131, Albuquerque, USA
124 schema:name Department of Computer Science, University of New Mexico, 87131, Albuquerque, USA
125 Enpartment of Computer Science, University of New Mexico, 87131, Albuquerque, USA
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...