An Anomaly Entection Algorithm Inspired by the Immune Syste View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Dipankar Dasgupta , Stephanie Forrest

ABSTRACT

Entecting anomaly in a system or a process behavior is very important in many real-world applications such as manufacturing, monitoring, signal processing etc. This chapter presents an anomaly Entection algorithm inspired by the negative-selection mechanism of the immune system, which discriminates betweensellandother.Here self is Enfined to benormal data patternsand non-self is any Enviation exceeding an allowable variation. Experiments with this anomaly Entection algorithm are reported for two data sets - time series data, generated using the Mackey-Glass equation and a simulated signal.Compared to existing methods, this method has the advantage of not requiring prior knowledge about all possible failure moEns of the monitored system. Results are reported to display the performance of the Entection algorithm More... »

PAGES

262-277

Book

TITLE

Artificial Immune Systems and Their Applications

ISBN

978-3-642-64174-9
978-3-642-59901-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-59901-9_14

DOI

http://dx.doi.org/10.1007/978-3-642-59901-9_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020751889


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Memphis", 
          "id": "https://www.grid.ac/institutes/grid.56061.34", 
          "name": [
            "Enpartment of Mathematical Sciences, The University of Memphis, 38152-6429, Memphis, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dasgupta", 
        "givenName": "Dipankar", 
        "id": "sg:person.013012607467.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013012607467.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of New Mexico", 
          "id": "https://www.grid.ac/institutes/grid.266832.b", 
          "name": [
            "Enpartment of Computer Science, The University of New Mexico, 87131, Albuquerque, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forrest", 
        "givenName": "Stephanie", 
        "id": "sg:person.0712103012.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712103012.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/neco.1994.6.2.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010660343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(90)90018-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012826977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(90)90018-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012826977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(94)90024-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015731904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(94)90024-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015731904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-189x(87)80014-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019265602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.5.1691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038708703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(84)90098-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044470645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(84)90098-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044470645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-vis:19941330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056860343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.80209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/81.269061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061236062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3188744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062107074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.267326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062549941"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "Entecting anomaly in a system or a process behavior is very important in many real-world applications such as manufacturing, monitoring, signal processing etc. This chapter presents an anomaly Entection algorithm inspired by the negative-selection mechanism of the immune system, which discriminates betweensellandother.Here self is Enfined to benormal data patternsand non-self is any Enviation exceeding an allowable variation. Experiments with this anomaly Entection algorithm are reported for two data sets - time series data, generated using the Mackey-Glass equation and a simulated signal.Compared to existing methods, this method has the advantage of not requiring prior knowledge about all possible failure moEns of the monitored system. Results are reported to display the performance of the Entection algorithm", 
    "editor": [
      {
        "familyName": "Dasgupta", 
        "givenName": "Dipankar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-59901-9_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-64174-9", 
        "978-3-642-59901-9"
      ], 
      "name": "Artificial Immune Systems and Their Applications", 
      "type": "Book"
    }, 
    "name": "An Anomaly Entection Algorithm Inspired by the Immune Syste", 
    "pagination": "262-277", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020751889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-59901-9_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "62e0c765cffdb1e79fad2eb65e072baf7371c9e110e345fe01a1181fc3c4d5fa"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-59901-9_14", 
      "https://app.dimensions.ai/details/publication/pub.1020751889"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119714_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-59901-9_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-59901-9_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-59901-9_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-59901-9_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-59901-9_14'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-59901-9_14 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N0324ca9bbc314a0ea5d29efedb138019
4 schema:citation https://doi.org/10.1016/0005-1098(84)90098-0
5 https://doi.org/10.1016/0005-1098(90)90018-d
6 https://doi.org/10.1016/0031-3203(94)90024-8
7 https://doi.org/10.1016/s0734-189x(87)80014-2
8 https://doi.org/10.1049/ip-vis:19941330
9 https://doi.org/10.1073/pnas.90.5.1691
10 https://doi.org/10.1109/72.80209
11 https://doi.org/10.1109/81.269061
12 https://doi.org/10.1115/1.3188744
13 https://doi.org/10.1126/science.267326
14 https://doi.org/10.1162/neco.1994.6.2.270
15 schema:datePublished 1999
16 schema:datePublishedReg 1999-01-01
17 schema:description Entecting anomaly in a system or a process behavior is very important in many real-world applications such as manufacturing, monitoring, signal processing etc. This chapter presents an anomaly Entection algorithm inspired by the negative-selection mechanism of the immune system, which discriminates betweensellandother.Here self is Enfined to benormal data patternsand non-self is any Enviation exceeding an allowable variation. Experiments with this anomaly Entection algorithm are reported for two data sets - time series data, generated using the Mackey-Glass equation and a simulated signal.Compared to existing methods, this method has the advantage of not requiring prior knowledge about all possible failure moEns of the monitored system. Results are reported to display the performance of the Entection algorithm
18 schema:editor N957dcef42e7541a49188cdb954e55823
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Nbab48d1e3a604005b1b23aeee8329954
23 schema:name An Anomaly Entection Algorithm Inspired by the Immune Syste
24 schema:pagination 262-277
25 schema:productId N0379761e80ba4f54b217719f56f6f3e7
26 N973c021f0d504d1181abf43d3b00971a
27 N9e5ef79d934d47b8a38292d521477f0b
28 schema:publisher N170aee8f4c504acb891ff2f31f4378e9
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020751889
30 https://doi.org/10.1007/978-3-642-59901-9_14
31 schema:sdDatePublished 2019-04-16T09:39
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nc2b87287ba4c4951807903094311438a
34 schema:url https://link.springer.com/10.1007%2F978-3-642-59901-9_14
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N0324ca9bbc314a0ea5d29efedb138019 rdf:first sg:person.013012607467.59
39 rdf:rest N236bafb595444e029961f1c7fa2afe63
40 N0379761e80ba4f54b217719f56f6f3e7 schema:name dimensions_id
41 schema:value pub.1020751889
42 rdf:type schema:PropertyValue
43 N170aee8f4c504acb891ff2f31f4378e9 schema:location Berlin, Heidelberg
44 schema:name Springer Berlin Heidelberg
45 rdf:type schema:Organisation
46 N236bafb595444e029961f1c7fa2afe63 rdf:first sg:person.0712103012.64
47 rdf:rest rdf:nil
48 N7be814f57d2e4d40b6904589a72e6bcd schema:familyName Dasgupta
49 schema:givenName Dipankar
50 rdf:type schema:Person
51 N957dcef42e7541a49188cdb954e55823 rdf:first N7be814f57d2e4d40b6904589a72e6bcd
52 rdf:rest rdf:nil
53 N973c021f0d504d1181abf43d3b00971a schema:name readcube_id
54 schema:value 62e0c765cffdb1e79fad2eb65e072baf7371c9e110e345fe01a1181fc3c4d5fa
55 rdf:type schema:PropertyValue
56 N9e5ef79d934d47b8a38292d521477f0b schema:name doi
57 schema:value 10.1007/978-3-642-59901-9_14
58 rdf:type schema:PropertyValue
59 Nbab48d1e3a604005b1b23aeee8329954 schema:isbn 978-3-642-59901-9
60 978-3-642-64174-9
61 schema:name Artificial Immune Systems and Their Applications
62 rdf:type schema:Book
63 Nc2b87287ba4c4951807903094311438a schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
66 schema:name Engineering
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
69 schema:name Electrical and Electronic Engineering
70 rdf:type schema:DefinedTerm
71 sg:person.013012607467.59 schema:affiliation https://www.grid.ac/institutes/grid.56061.34
72 schema:familyName Dasgupta
73 schema:givenName Dipankar
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013012607467.59
75 rdf:type schema:Person
76 sg:person.0712103012.64 schema:affiliation https://www.grid.ac/institutes/grid.266832.b
77 schema:familyName Forrest
78 schema:givenName Stephanie
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712103012.64
80 rdf:type schema:Person
81 https://doi.org/10.1016/0005-1098(84)90098-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044470645
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0005-1098(90)90018-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1012826977
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0031-3203(94)90024-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015731904
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/s0734-189x(87)80014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019265602
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1049/ip-vis:19941330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860343
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1073/pnas.90.5.1691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038708703
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/72.80209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219266
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/81.269061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061236062
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1115/1.3188744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062107074
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1126/science.267326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549941
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1162/neco.1994.6.2.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010660343
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.266832.b schema:alternateName University of New Mexico
104 schema:name Enpartment of Computer Science, The University of New Mexico, 87131, Albuquerque, NM, USA
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.56061.34 schema:alternateName University of Memphis
107 schema:name Enpartment of Mathematical Sciences, The University of Memphis, 38152-6429, Memphis, TN, USA
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...