Valuation and Optimality in Exchange Economies with a Countable Number of Agents View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1991

AUTHORS

Charalambos D. Aliprantis , Donald J. Brown , Owen Burkinshaw

ABSTRACT

We present versions of the two fundamental welfare theorems of economics for exchange economies with a countable number of agents and an infinite dimensional commodity space. These results are then specialized to the overlapping generations model.

PAGES

1-21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-58199-1_1

DOI

http://dx.doi.org/10.1007/978-3-642-58199-1_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034599740


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, IUPUI, 1125 East 38th Street, 46205-2810, Indianapolis, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.257413.6", 
          "name": [
            "Department of Mathematical Sciences, IUPUI, 1125 East 38th Street, 46205-2810, Indianapolis, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aliprantis", 
        "givenName": "Charalambos D.", 
        "id": "sg:person.014135050231.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135050231.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Economics, Stanford University, 94305-6072, Stanford, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Economics, Stanford University, 94305-6072, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Donald J.", 
        "id": "sg:person.010202634623.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010202634623.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, IUPUI, 1125 East 38th Street, 46205-2810, Indianapolis, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.257413.6", 
          "name": [
            "Department of Mathematical Sciences, IUPUI, 1125 East 38th Street, 46205-2810, Indianapolis, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burkinshaw", 
        "givenName": "Owen", 
        "id": "sg:person.011747227346.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747227346.83"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "We present versions of the two fundamental welfare theorems of economics for exchange economies with a countable number of agents and an infinite dimensional commodity space. These results are then specialized to the overlapping generations model.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-58199-1_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-63502-1", 
        "978-3-642-58199-1"
      ], 
      "name": "Positive Operators, Riesz Spaces, and Economics", 
      "type": "Book"
    }, 
    "keywords": [
      "exchange economy", 
      "infinite dimensional commodity spaces", 
      "fundamental welfare theorems", 
      "welfare theorem", 
      "commodity space", 
      "generation model", 
      "economy", 
      "economics", 
      "valuation", 
      "optimality", 
      "model", 
      "present version", 
      "countable number", 
      "version", 
      "number", 
      "results", 
      "agents", 
      "theorem", 
      "space", 
      "dimensional commodity space"
    ], 
    "name": "Valuation and Optimality in Exchange Economies with a Countable Number of Agents", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034599740"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-58199-1_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-58199-1_1", 
      "https://app.dimensions.ai/details/publication/pub.1034599740"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_145.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-58199-1_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-58199-1_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-58199-1_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-58199-1_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-58199-1_1'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      22 PREDICATES      45 URIs      38 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-58199-1_1 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Ne441271731814a2fb91f394f3a57664a
4 schema:datePublished 1991
5 schema:datePublishedReg 1991-01-01
6 schema:description We present versions of the two fundamental welfare theorems of economics for exchange economies with a countable number of agents and an infinite dimensional commodity space. These results are then specialized to the overlapping generations model.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N2752f1270f9e4a118637bc888d50ebfa
11 schema:keywords agents
12 commodity space
13 countable number
14 dimensional commodity space
15 economics
16 economy
17 exchange economy
18 fundamental welfare theorems
19 generation model
20 infinite dimensional commodity spaces
21 model
22 number
23 optimality
24 present version
25 results
26 space
27 theorem
28 valuation
29 version
30 welfare theorem
31 schema:name Valuation and Optimality in Exchange Economies with a Countable Number of Agents
32 schema:pagination 1-21
33 schema:productId N7e88aa870f854ffcba92689f7caa25b6
34 Nafc0a75251c54c43b3bcd3d060962c70
35 schema:publisher N2928df70efe146108c64915ec6ea6715
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034599740
37 https://doi.org/10.1007/978-3-642-58199-1_1
38 schema:sdDatePublished 2021-12-01T19:57
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N7c6f9b3c24134d429b313368598cb3db
41 schema:url https://doi.org/10.1007/978-3-642-58199-1_1
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N1ee9a1feb90e4415bcfb6bf2e45f23af rdf:first sg:person.011747227346.83
46 rdf:rest rdf:nil
47 N2752f1270f9e4a118637bc888d50ebfa schema:isbn 978-3-642-58199-1
48 978-3-642-63502-1
49 schema:name Positive Operators, Riesz Spaces, and Economics
50 rdf:type schema:Book
51 N2928df70efe146108c64915ec6ea6715 schema:name Springer Nature
52 rdf:type schema:Organisation
53 N7c6f9b3c24134d429b313368598cb3db schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N7e88aa870f854ffcba92689f7caa25b6 schema:name doi
56 schema:value 10.1007/978-3-642-58199-1_1
57 rdf:type schema:PropertyValue
58 Nafc0a75251c54c43b3bcd3d060962c70 schema:name dimensions_id
59 schema:value pub.1034599740
60 rdf:type schema:PropertyValue
61 Nb7deea3e7a384ba4a559199a30f2ec09 rdf:first sg:person.010202634623.01
62 rdf:rest N1ee9a1feb90e4415bcfb6bf2e45f23af
63 Ne441271731814a2fb91f394f3a57664a rdf:first sg:person.014135050231.02
64 rdf:rest Nb7deea3e7a384ba4a559199a30f2ec09
65 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
66 schema:name Economics
67 rdf:type schema:DefinedTerm
68 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
69 schema:name Applied Economics
70 rdf:type schema:DefinedTerm
71 sg:person.010202634623.01 schema:affiliation grid-institutes:grid.168010.e
72 schema:familyName Brown
73 schema:givenName Donald J.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010202634623.01
75 rdf:type schema:Person
76 sg:person.011747227346.83 schema:affiliation grid-institutes:grid.257413.6
77 schema:familyName Burkinshaw
78 schema:givenName Owen
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011747227346.83
80 rdf:type schema:Person
81 sg:person.014135050231.02 schema:affiliation grid-institutes:grid.257413.6
82 schema:familyName Aliprantis
83 schema:givenName Charalambos D.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135050231.02
85 rdf:type schema:Person
86 grid-institutes:grid.168010.e schema:alternateName Department of Economics, Stanford University, 94305-6072, Stanford, CA, USA
87 schema:name Department of Economics, Stanford University, 94305-6072, Stanford, CA, USA
88 rdf:type schema:Organization
89 grid-institutes:grid.257413.6 schema:alternateName Department of Mathematical Sciences, IUPUI, 1125 East 38th Street, 46205-2810, Indianapolis, IN, USA
90 schema:name Department of Mathematical Sciences, IUPUI, 1125 East 38th Street, 46205-2810, Indianapolis, IN, USA
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...