Ontology type: schema:Chapter
1992
AUTHORSH. Condé , R. Haight , H. Klein , P. Lisowski
ABSTRACTA variety of neutron sources producing “monoenergetic” neutrons of up to 200 MeV in energy and “white” spectral distributions up to 800 MeV is described in this paper. The H(t,n)3He reaction can be employed at LAHL as the ideal monoenergetic neutron source for energies En < 14 MeV because a triton beam with energies of up to 22 MeV is available on an FN tandem. A rotating, high-pressure hydrogen gas target allows high intensity neutron fields to be produced which are well-suited for studying the neutron-induced activation of long-lived isotopes. At PTB, the D(d,n)3He reaction must still be used for the same purpose because any radiation hazard which may be caused by the handling of tritium must be avoided. However, the unavoidable contribution of low-energy neutrons due to deuteron breakup reactions must be corrected for. For this purpose, the spectral fluence has been determined for projectile energies of up to 13.3 MeV and neutron emission angles of up to 15 degrees, which are occasionally taken into account in close-geometry irradiations. At the The Svedberg Laboratory in Uppsala the upgraded cyclotron is now equipped with a thin 7Li target in order to produce a “monoenergetic” neutron beam with energies from 50 to 200 MeV, well collimated to a solid angle of about 10−4 sr. A highly efficient recoil proton spectrometer allows the primary spectral neutron fluence to be reconstructed and other (n,p) reactions to be investigated for isovector excitations. At LANL a spallation neutron source is now available at Target-4 of the WHR facility. Part of the 800 MeV proton beam from LAMPF is chopped and bunched to provide 40 macropulses/s and a total of 32000 micropulses/s with a time width of 150 ps and a separation of > 1 microsecond. Seven beam lines with flight paths between 7 and 90 m (350 m is aimed at) are available at angles of 15 to 90 degrees to the incident proton beam. The spectral distributions differ for these production angles and allow low or high energy ranges to be emphasized. Neutron-induced charged particle and photon production and fission have already been investigated. More... »
PAGES386-394
Nuclear Data for Science and Technology
ISBN
978-3-642-63473-4
978-3-642-58113-7
http://scigraph.springernature.com/pub.10.1007/978-3-642-58113-7_112
DOIhttp://dx.doi.org/10.1007/978-3-642-58113-7_112
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1002817497
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Neutron Research, Uppsala University, Uppsala, Sweden",
"id": "http://www.grid.ac/institutes/grid.8993.b",
"name": [
"Department of Neutron Research, Uppsala University, Uppsala, Sweden"
],
"type": "Organization"
},
"familyName": "Cond\u00e9",
"givenName": "H.",
"id": "sg:person.016640146037.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016640146037.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Los Alamos National Laboratory (LANL), Los Almos, USA",
"id": "http://www.grid.ac/institutes/grid.148313.c",
"name": [
"Los Alamos National Laboratory (LANL), Los Almos, USA"
],
"type": "Organization"
},
"familyName": "Haight",
"givenName": "R.",
"id": "sg:person.011165453407.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011165453407.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany",
"id": "http://www.grid.ac/institutes/grid.4764.1",
"name": [
"Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany"
],
"type": "Organization"
},
"familyName": "Klein",
"givenName": "H.",
"id": "sg:person.014226713773.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014226713773.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Los Alamos National Laboratory (LANL), Los Almos, USA",
"id": "http://www.grid.ac/institutes/grid.148313.c",
"name": [
"Los Alamos National Laboratory (LANL), Los Almos, USA"
],
"type": "Organization"
},
"familyName": "Lisowski",
"givenName": "P.",
"id": "sg:person.015564567024.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015564567024.50"
],
"type": "Person"
}
],
"datePublished": "1992",
"datePublishedReg": "1992-01-01",
"description": "A variety of neutron sources producing \u201cmonoenergetic\u201d neutrons of up to 200 MeV in energy and \u201cwhite\u201d spectral distributions up to 800 MeV is described in this paper. The H(t,n)3He reaction can be employed at LAHL as the ideal monoenergetic neutron source for energies En < 14 MeV because a triton beam with energies of up to 22 MeV is available on an FN tandem. A rotating, high-pressure hydrogen gas target allows high intensity neutron fields to be produced which are well-suited for studying the neutron-induced activation of long-lived isotopes. At PTB, the D(d,n)3He reaction must still be used for the same purpose because any radiation hazard which may be caused by the handling of tritium must be avoided. However, the unavoidable contribution of low-energy neutrons due to deuteron breakup reactions must be corrected for. For this purpose, the spectral fluence has been determined for projectile energies of up to 13.3 MeV and neutron emission angles of up to 15 degrees, which are occasionally taken into account in close-geometry irradiations. At the The Svedberg Laboratory in Uppsala the upgraded cyclotron is now equipped with a thin 7Li target in order to produce a \u201cmonoenergetic\u201d neutron beam with energies from 50 to 200 MeV, well collimated to a solid angle of about 10\u22124 sr. A highly efficient recoil proton spectrometer allows the primary spectral neutron fluence to be reconstructed and other (n,p) reactions to be investigated for isovector excitations. At LANL a spallation neutron source is now available at Target-4 of the WHR facility. Part of the 800 MeV proton beam from LAMPF is chopped and bunched to provide 40 macropulses/s and a total of 32000 micropulses/s with a time width of 150 ps and a separation of > 1 microsecond. Seven beam lines with flight paths between 7 and 90 m (350 m is aimed at) are available at angles of 15 to 90 degrees to the incident proton beam. The spectral distributions differ for these production angles and allow low or high energy ranges to be emphasized. Neutron-induced charged particle and photon production and fission have already been investigated.",
"editor": [
{
"familyName": "Qaim",
"givenName": "Syed M.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-58113-7_112",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-63473-4",
"978-3-642-58113-7"
],
"name": "Nuclear Data for Science and Technology",
"type": "Book"
},
"keywords": [
"neutron source",
"proton beam",
"high-intensity neutron fields",
"spectral distribution",
"recoil-proton spectrometer",
"monoenergetic neutron sources",
"nuclear data measurements",
"incident proton beam",
"high energy range",
"Spallation Neutron Source",
"low-energy neutrons",
"spectral neutron fluence",
"hydrogen gas target",
"neutron emission angle",
"MeV proton beam",
"new neutron facility",
"deuteron breakup reaction",
"projectile energy",
"spectral fluence",
"photon production",
"Svedberg Laboratory",
"proton spectrometer",
"isovector excitations",
"beam line",
"energy range",
"gas target",
"neutron field",
"neutron facility",
"triton beam",
"neutron beam",
"neutron-induced activation",
"emission angle",
"breakup reactions",
"MeV",
"solid angle",
"FN tandem",
"neutron fluence",
"unavoidable contribution",
"neutrons",
"time width",
"beam",
"production angle",
"fluence",
"reaction",
"energy",
"radiation hazards",
"target 4",
"flight path",
"LAMPF",
"cyclotron",
"angle",
"excitation",
"LANL",
"spectrometer",
"fission",
"microseconds",
"PS",
"LAHL",
"source",
"separation",
"data measurements",
"width",
"isotopes",
"particles",
"irradiation",
"field",
"measurements",
"distribution",
"tritium",
"facilities",
"Sr",
"range",
"PTB",
"same purpose",
"target",
"EN",
"contribution",
"Uppsala",
"path",
"lines",
"degree",
"account",
"order",
"variety",
"laboratory",
"tandem",
"handling",
"production",
"hazards",
"purpose",
"activation",
"part",
"paper",
"total"
],
"name": "New Neutron Facilities for Nuclear Data Measurements at En > 10 MeV",
"pagination": "386-394",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1002817497"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-58113-7_112"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-58113-7_112",
"https://app.dimensions.ai/details/publication/pub.1002817497"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_218.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-58113-7_112"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-58113-7_112'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-58113-7_112'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-58113-7_112'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-58113-7_112'
This table displays all metadata directly associated to this object as RDF triples.
189 TRIPLES
23 PREDICATES
122 URIs
113 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-58113-7_112 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | ″ | anzsrc-for:03 |
4 | ″ | ″ | anzsrc-for:0306 |
5 | ″ | schema:author | N6a1d664b073649ccb4739e1f1d29558a |
6 | ″ | schema:datePublished | 1992 |
7 | ″ | schema:datePublishedReg | 1992-01-01 |
8 | ″ | schema:description | A variety of neutron sources producing “monoenergetic” neutrons of up to 200 MeV in energy and “white” spectral distributions up to 800 MeV is described in this paper. The H(t,n)3He reaction can be employed at LAHL as the ideal monoenergetic neutron source for energies En < 14 MeV because a triton beam with energies of up to 22 MeV is available on an FN tandem. A rotating, high-pressure hydrogen gas target allows high intensity neutron fields to be produced which are well-suited for studying the neutron-induced activation of long-lived isotopes. At PTB, the D(d,n)3He reaction must still be used for the same purpose because any radiation hazard which may be caused by the handling of tritium must be avoided. However, the unavoidable contribution of low-energy neutrons due to deuteron breakup reactions must be corrected for. For this purpose, the spectral fluence has been determined for projectile energies of up to 13.3 MeV and neutron emission angles of up to 15 degrees, which are occasionally taken into account in close-geometry irradiations. At the The Svedberg Laboratory in Uppsala the upgraded cyclotron is now equipped with a thin 7Li target in order to produce a “monoenergetic” neutron beam with energies from 50 to 200 MeV, well collimated to a solid angle of about 10−4 sr. A highly efficient recoil proton spectrometer allows the primary spectral neutron fluence to be reconstructed and other (n,p) reactions to be investigated for isovector excitations. At LANL a spallation neutron source is now available at Target-4 of the WHR facility. Part of the 800 MeV proton beam from LAMPF is chopped and bunched to provide 40 macropulses/s and a total of 32000 micropulses/s with a time width of 150 ps and a separation of > 1 microsecond. Seven beam lines with flight paths between 7 and 90 m (350 m is aimed at) are available at angles of 15 to 90 degrees to the incident proton beam. The spectral distributions differ for these production angles and allow low or high energy ranges to be emphasized. Neutron-induced charged particle and photon production and fission have already been investigated. |
9 | ″ | schema:editor | N84fe7cf038994669a355b69dceaca773 |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | Nbd56e4a5a7ff45d9b7a14479e36e3e07 |
14 | ″ | schema:keywords | EN |
15 | ″ | ″ | FN tandem |
16 | ″ | ″ | LAHL |
17 | ″ | ″ | LAMPF |
18 | ″ | ″ | LANL |
19 | ″ | ″ | MeV |
20 | ″ | ″ | MeV proton beam |
21 | ″ | ″ | PS |
22 | ″ | ″ | PTB |
23 | ″ | ″ | Spallation Neutron Source |
24 | ″ | ″ | Sr |
25 | ″ | ″ | Svedberg Laboratory |
26 | ″ | ″ | Uppsala |
27 | ″ | ″ | account |
28 | ″ | ″ | activation |
29 | ″ | ″ | angle |
30 | ″ | ″ | beam |
31 | ″ | ″ | beam line |
32 | ″ | ″ | breakup reactions |
33 | ″ | ″ | contribution |
34 | ″ | ″ | cyclotron |
35 | ″ | ″ | data measurements |
36 | ″ | ″ | degree |
37 | ″ | ″ | deuteron breakup reaction |
38 | ″ | ″ | distribution |
39 | ″ | ″ | emission angle |
40 | ″ | ″ | energy |
41 | ″ | ″ | energy range |
42 | ″ | ″ | excitation |
43 | ″ | ″ | facilities |
44 | ″ | ″ | field |
45 | ″ | ″ | fission |
46 | ″ | ″ | flight path |
47 | ″ | ″ | fluence |
48 | ″ | ″ | gas target |
49 | ″ | ″ | handling |
50 | ″ | ″ | hazards |
51 | ″ | ″ | high energy range |
52 | ″ | ″ | high-intensity neutron fields |
53 | ″ | ″ | hydrogen gas target |
54 | ″ | ″ | incident proton beam |
55 | ″ | ″ | irradiation |
56 | ″ | ″ | isotopes |
57 | ″ | ″ | isovector excitations |
58 | ″ | ″ | laboratory |
59 | ″ | ″ | lines |
60 | ″ | ″ | low-energy neutrons |
61 | ″ | ″ | measurements |
62 | ″ | ″ | microseconds |
63 | ″ | ″ | monoenergetic neutron sources |
64 | ″ | ″ | neutron beam |
65 | ″ | ″ | neutron emission angle |
66 | ″ | ″ | neutron facility |
67 | ″ | ″ | neutron field |
68 | ″ | ″ | neutron fluence |
69 | ″ | ″ | neutron source |
70 | ″ | ″ | neutron-induced activation |
71 | ″ | ″ | neutrons |
72 | ″ | ″ | new neutron facility |
73 | ″ | ″ | nuclear data measurements |
74 | ″ | ″ | order |
75 | ″ | ″ | paper |
76 | ″ | ″ | part |
77 | ″ | ″ | particles |
78 | ″ | ″ | path |
79 | ″ | ″ | photon production |
80 | ″ | ″ | production |
81 | ″ | ″ | production angle |
82 | ″ | ″ | projectile energy |
83 | ″ | ″ | proton beam |
84 | ″ | ″ | proton spectrometer |
85 | ″ | ″ | purpose |
86 | ″ | ″ | radiation hazards |
87 | ″ | ″ | range |
88 | ″ | ″ | reaction |
89 | ″ | ″ | recoil-proton spectrometer |
90 | ″ | ″ | same purpose |
91 | ″ | ″ | separation |
92 | ″ | ″ | solid angle |
93 | ″ | ″ | source |
94 | ″ | ″ | spectral distribution |
95 | ″ | ″ | spectral fluence |
96 | ″ | ″ | spectral neutron fluence |
97 | ″ | ″ | spectrometer |
98 | ″ | ″ | tandem |
99 | ″ | ″ | target |
100 | ″ | ″ | target 4 |
101 | ″ | ″ | time width |
102 | ″ | ″ | total |
103 | ″ | ″ | tritium |
104 | ″ | ″ | triton beam |
105 | ″ | ″ | unavoidable contribution |
106 | ″ | ″ | variety |
107 | ″ | ″ | width |
108 | ″ | schema:name | New Neutron Facilities for Nuclear Data Measurements at En > 10 MeV |
109 | ″ | schema:pagination | 386-394 |
110 | ″ | schema:productId | N0dff60aa980b4a69aab699f7f9d13192 |
111 | ″ | ″ | N0e1eb02c1a854d1fb3829285b4bf5cb7 |
112 | ″ | schema:publisher | N736e5699eec84527afe6c030faacfdfc |
113 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002817497 |
114 | ″ | ″ | https://doi.org/10.1007/978-3-642-58113-7_112 |
115 | ″ | schema:sdDatePublished | 2022-05-10T10:42 |
116 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
117 | ″ | schema:sdPublisher | N296041e91d864555b8966953862c6cfd |
118 | ″ | schema:url | https://doi.org/10.1007/978-3-642-58113-7_112 |
119 | ″ | sgo:license | sg:explorer/license/ |
120 | ″ | sgo:sdDataset | chapters |
121 | ″ | rdf:type | schema:Chapter |
122 | N0dff60aa980b4a69aab699f7f9d13192 | schema:name | doi |
123 | ″ | schema:value | 10.1007/978-3-642-58113-7_112 |
124 | ″ | rdf:type | schema:PropertyValue |
125 | N0e1eb02c1a854d1fb3829285b4bf5cb7 | schema:name | dimensions_id |
126 | ″ | schema:value | pub.1002817497 |
127 | ″ | rdf:type | schema:PropertyValue |
128 | N296041e91d864555b8966953862c6cfd | schema:name | Springer Nature - SN SciGraph project |
129 | ″ | rdf:type | schema:Organization |
130 | N3d47d54e4c2c4e7fadbab8de6578f562 | rdf:first | sg:person.011165453407.14 |
131 | ″ | rdf:rest | N552decf7a6b4464982e9b9a2deb05339 |
132 | N552decf7a6b4464982e9b9a2deb05339 | rdf:first | sg:person.014226713773.94 |
133 | ″ | rdf:rest | N57ee5755a87144d29a06de5e1af4fac3 |
134 | N57ee5755a87144d29a06de5e1af4fac3 | rdf:first | sg:person.015564567024.50 |
135 | ″ | rdf:rest | rdf:nil |
136 | N5a115267596e436f8216e58eaa925213 | schema:familyName | Qaim |
137 | ″ | schema:givenName | Syed M. |
138 | ″ | rdf:type | schema:Person |
139 | N6a1d664b073649ccb4739e1f1d29558a | rdf:first | sg:person.016640146037.46 |
140 | ″ | rdf:rest | N3d47d54e4c2c4e7fadbab8de6578f562 |
141 | N736e5699eec84527afe6c030faacfdfc | schema:name | Springer Nature |
142 | ″ | rdf:type | schema:Organisation |
143 | N84fe7cf038994669a355b69dceaca773 | rdf:first | N5a115267596e436f8216e58eaa925213 |
144 | ″ | rdf:rest | rdf:nil |
145 | Nbd56e4a5a7ff45d9b7a14479e36e3e07 | schema:isbn | 978-3-642-58113-7 |
146 | ″ | ″ | 978-3-642-63473-4 |
147 | ″ | schema:name | Nuclear Data for Science and Technology |
148 | ″ | rdf:type | schema:Book |
149 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
150 | ″ | schema:name | Physical Sciences |
151 | ″ | rdf:type | schema:DefinedTerm |
152 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
153 | ″ | schema:name | Other Physical Sciences |
154 | ″ | rdf:type | schema:DefinedTerm |
155 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
156 | ″ | schema:name | Chemical Sciences |
157 | ″ | rdf:type | schema:DefinedTerm |
158 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
159 | ″ | schema:name | Physical Chemistry (incl. Structural) |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | sg:person.011165453407.14 | schema:affiliation | grid-institutes:grid.148313.c |
162 | ″ | schema:familyName | Haight |
163 | ″ | schema:givenName | R. |
164 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011165453407.14 |
165 | ″ | rdf:type | schema:Person |
166 | sg:person.014226713773.94 | schema:affiliation | grid-institutes:grid.4764.1 |
167 | ″ | schema:familyName | Klein |
168 | ″ | schema:givenName | H. |
169 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014226713773.94 |
170 | ″ | rdf:type | schema:Person |
171 | sg:person.015564567024.50 | schema:affiliation | grid-institutes:grid.148313.c |
172 | ″ | schema:familyName | Lisowski |
173 | ″ | schema:givenName | P. |
174 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015564567024.50 |
175 | ″ | rdf:type | schema:Person |
176 | sg:person.016640146037.46 | schema:affiliation | grid-institutes:grid.8993.b |
177 | ″ | schema:familyName | Condé |
178 | ″ | schema:givenName | H. |
179 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016640146037.46 |
180 | ″ | rdf:type | schema:Person |
181 | grid-institutes:grid.148313.c | schema:alternateName | Los Alamos National Laboratory (LANL), Los Almos, USA |
182 | ″ | schema:name | Los Alamos National Laboratory (LANL), Los Almos, USA |
183 | ″ | rdf:type | schema:Organization |
184 | grid-institutes:grid.4764.1 | schema:alternateName | Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany |
185 | ″ | schema:name | Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany |
186 | ″ | rdf:type | schema:Organization |
187 | grid-institutes:grid.8993.b | schema:alternateName | Department of Neutron Research, Uppsala University, Uppsala, Sweden |
188 | ″ | schema:name | Department of Neutron Research, Uppsala University, Uppsala, Sweden |
189 | ″ | rdf:type | schema:Organization |